Detecting and Mitigating Salinity

Larry A. Stein Texas A & M AgriLife Extension Service

Water

- Turgor pressure to expand cells
- All contain salt
- Key is how much?
- And what kind?

Water moves from a high concentration to a low concentration Said another way water moves to a higher concentration of salts

Salinity

- Describes dissolved solids in water and soil
- How much
- What kind
- Too much in soil solution; water moves out of the plant
- Less water available to plant

 Salt: electrically charged lattice of cations (+) and anions (-) resulting from an acid-base, charge neutralizing reaction.

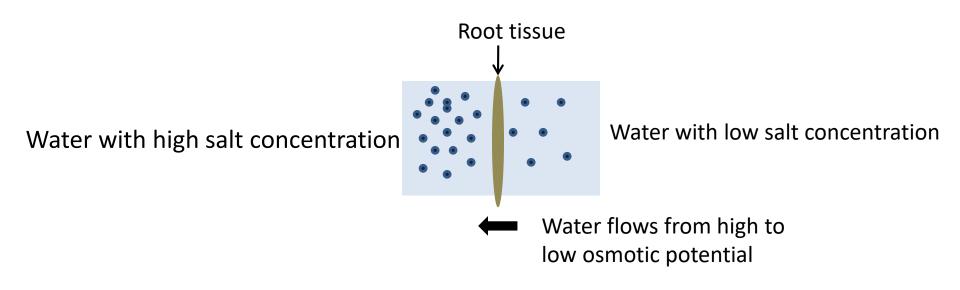
• Cations:

- Calcium (Ca2⁺)
- Magnesium Mg2⁺)
- Sodium (Na⁺)
- Iron (Fe²⁺ and Fe³⁺)
- Ammonium (NH⁴⁺)

• Anions:

- Bicarbonate (HCO_3^{-})
- Cabonate (CO_3^{2-})
- Chloride (Cl⁻)
- Sulfate (SO_4^{2})
- Nitrate (NO_3^-)

Slide Credits: Scheiner


• Ca(HCO₃)₂

- NaCl₂
- MgSO₄
- Ca(NO₃)₂

Salt and Osmotic Potential

All irrigation water contains dissolved salts

- Dissolved salt increases the osmotic (suction) potential
- Water flows from high to low water potential
- The more dissolved salt in soil water, the more difficult it is for roots to extract it (drought stress)

How can salts negatively impact grapevines?

- 1. Osmotic stress
- 2. Ion toxicity
- 3. Impact on soil properties

Measures of Salinity

Soil and Irrigation Water:

- **1. Electrical conductivity (EC)**: pure water will not conduct electricity, but it will with the addition of salt
 - Units: mmho/cm, dS/m
 - EC is a good estimator of the total dissolved salts
- 2. Total Dissolved Solids (TDS) and Total Soluble Salts (TSS)
 - **Units:** ppm, mg/L (ppm = mg/L)
- EC can be used to estimate TDS and TSS using the following
- equation:
- EC (dS/m) x 640 = TSS or TDS

Salinity in Irrigation Water

Guidelines for Interpreting Irrigation Suitability for Vineyards

Analysis (Salinity)	No Problem	Increasing Problem	Severe Problem	
EC				
dS/m or mmho/cm	< 1	1.0 to 2.7	>2.7	
TDS				
ppm or mg/L	<640	640 to 1728	>1728	

Potential severity is a general guideline and will vary by:

- soil type
- rainfall
- irrigation frequency

Soil Salinity

Guidelines for Interpreting Soil Suitability for Vineyards

Analysis (Salinity)	No Problem Increasing Problem		n Severe Problem
EC			
dS/m or mmho/cm	1.5 to 2.5	2.5 to 4.0	4.0 to 7.0
TDS			
ppm or mg/L	960 to 1600	1600 to 2560	2560 to 5600
	•	1	1
	10 to 25% yield		25 to 50% yield
	reduction expected		reduction expected

Ion Toxicity

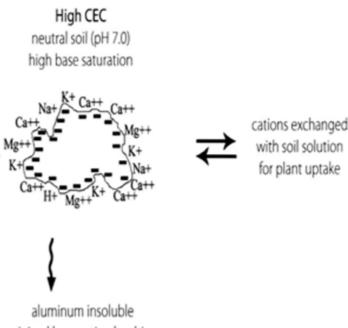
Guidelines for Interpreting Irrigation Suitability for Vineyards

Analysis (Salinity)	No Problem	Increasing Problem	Severe Problem
Sodium ppm Meq/L	<20 <460		
Chloride ppm Meq/L	<140 <4	140 to 525 4 to 15	>525 >15
Boron ppm	<1	1-3	>3

Ion Toxicity

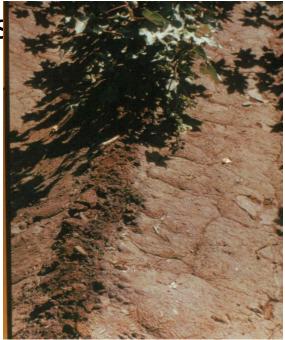
Guidelines for Interpreting Soil Suitability for Vineyards

Analysis (Salinity)	No Problem	Increasing Problem	Severe Problem
Sodium ppm Meq/L		>690 >30	
Chloride ppm Meq/L	<350 <10	350 to 1060 10 to 30	>1060 >30
Boron ppm	<1	1 to 3	>3



Toxicity symptoms often include marginal leaf burn and stunted growth. If you suspect toxicity take a tissue sample.

Sodium Hazard


 Cations are adsorbed to soil based on the type of ion (attraction) and concentration present: strong attraction weak attraction

```
A|^{3+} > Ca^{2+} > Mg^{2+} > K^+ = NH^{4+} > Na^+
```


minimal base cation leaching

- Significant sodium adsorption can result in loss of
- soil structure (particularly clay soils
- hard compacted soil
- reduced water infiltration
- reduced root growth
- Measured as:
- Exchangeable sodium percentage (ESP)
- Sodium adsorportion ratio (SAR)

• Sodium adsorption ratio (SAR)

- ratio of activity of sodium to calcium and magnesium
- calcium and magnesium compete with sodium for exchange sites <u>Na⁺</u>

$$SAR = \sqrt{(Ca^{++}+Mg^{++})/2}$$

Guidelines for Interpreting Irrigation Suitability for Vineyards

Analysis	No Problem	Increasing Problem	Severe Problem
SAR	< 6	6 to 9	>9

*High levels of carbonate and bicarbonate increase sodium hazard of water

• Exchangeable sodium percentage (ESP)

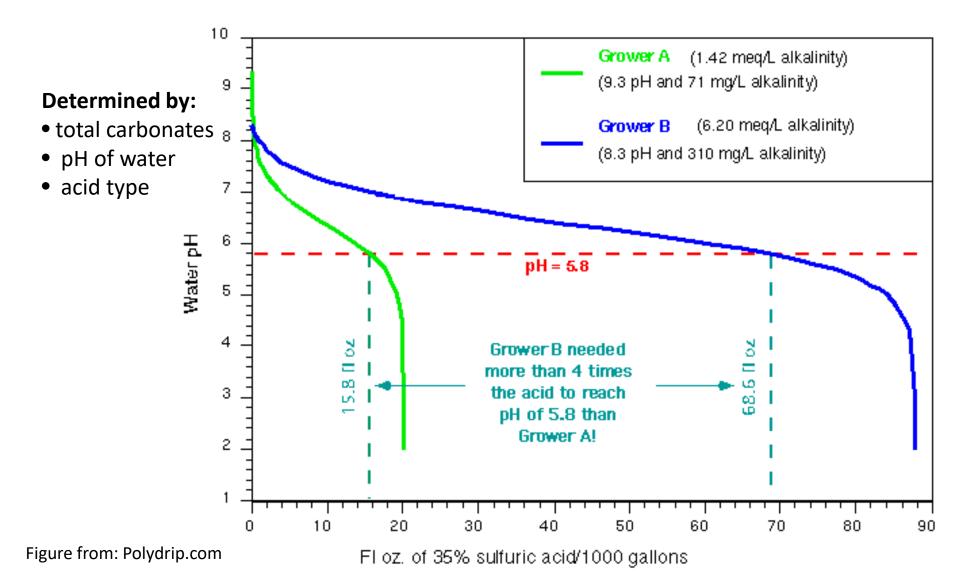
• Percentage of CEC in soil occupied by sodium

Analysis	No Problem	Increasing Problem	Severe Problem	
ESP	<10	10 to 15	>15	

When should you start looking for other

Water Source =Well	Water Use =Irrigation		•	7		
Parameter analyzed	Results	Units	Method	V. Limiting	Limiting	Acceptable
Calcium (Ca)	608	ppm	ICP	大大	***	
Magnesium (Mg)	221	ppm	ICP		****	
Sodium (Na)	1432	ppm	ICP	****		
Potassium (K)	10	ppm	ICP			****
Boron (B)	c 0.01	ppm	ICP			*****
Carbonate (CO ₃)	0	ppm	Titr.			****
Bicarbonate (HCO ₃)	293	ppm	Titr.			****
Sulfate (SO and address to the Sol Sol	1591	pom	ICP	*****		
Chloride (CI-)	2277	ppm	Titr.	****		
Nitrate-N (NO ₃ -N)	0.18	ppm	Cd-red.			****
Phosphorus (P)	< 0.01	ppm	ICP			****
оH	6.74		ISE			***
Conductivity	8170	umhos/cm	Cond.	****		
Hardness	141	grains CaCO3/gallon	Calc.		****	
Hardness	2428	ppm CaC03	Cale.		****	
Alkalinity	240	ppm CaC03	Calc.			****
Total Dissolved Salts (TDS)	6433	ppm	Cale.	****		
SAR	12.6		Cale.		****	
Iron (Fe)	0.25	ppm	ICP			****
Zinc (Zn)	0.05	ppm	ICP			****
Copper (Cu)	< 0.01	ppm	ICP			***
Manganese (Mn)	4.08	ppm	ICP		****	
Arsenic (As)						

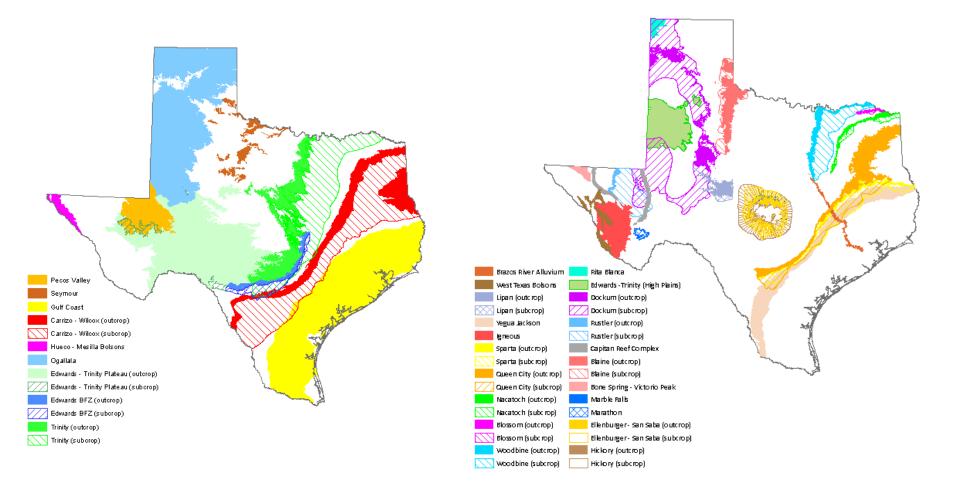
Irrigation Water pH & Alkalinity


- pH—measure of the H+ ions in the water
- Alkalinity—measure of the water's ability to neutralize acidity
 - Amount of carbonates, bicarbonates, hydroxides
 - Measurement by ppm calcium carbonate (CaCO3)
- pH test alone does not assess alkalinity
 - High alkalinity = basic pH
 - Basic pH may not mean high alkalinity

Impact of high alkalinity water

- Indicator of high salinity
- Micronutrients (Iron, zinc, manganese, copper) become less available for soil uptake
- Scaling, plugging, stoppage of emitters
- Hydrolysis of spray solutions

- Acid injection:
- H+ (from acid) + HCO₃- (in the irrigation water) \rightarrow CO₂ + H₂O
- infuric acid


Acid injection requirement

Other salts found in Texas wells

- Sulfates—(SO4): not a serious limitation
 - rotten egg smell if sulfate-reducing bacteria convert hydrogen sulfide gas
 - contributes to salinity hazard
- Nitrates—(NO3): free plant growth fertilizer
 - may stimulate growth at wrong time
 - contributes to salinity hazard

Sources of Irrigation Water Vary

Images from: Texas Water Development Board

Predicting Irrigation Water Quality

- Prior to drilling a well:
 - Investigate water quality in nearby wells (talk to neighbors in area).
 - Talk to experienced local well driller.
 - Texas Water Development Board ground water database (www.twdb.state.tx.us).
- Test the water:
 - Prior to installation of irrigation system.
 - Every 1-2 years (particularly following drought).
 - Use lab qualified to test irrigation water or other intended use.

Irrigation Water and Soil Testing

- What information should you be interested in?
- 1. Total concentration of soluble salts (TDS, TSS, EC)
- 2. Relative proportion of sodium to other cations (SAR)
- 3. Bicarbonate concentration as related to the calcium, and magnesium
- 4. Concentration of specific elements and compounds
- When should you test your irrigation water?
- The time of year that you will be irrigating most (summer)

Interpretation of Results

- What are the offending salts?
 - Sodium, chloride vs. sulfates, carbonates
- What is the soil type for your vineyard?
 - Coarse textured soils lower risk, more readily leached
- How much rainfall occurs in your region?

- Occasional, supplemental use vs. depend Annual rainfall (30 year avg)

35 40 45

Mitigating Salinity Problems

- Alternate clean water source
- Rootstock selection
- Leaching
- Soil amendments

Rootstocks and Salt Tolerance

- Rootstocks reported to have moderate to good salt
- tolerance:
- Salt Creek
- Dog Ridge
- 1103P
- 140Ru
- St. George

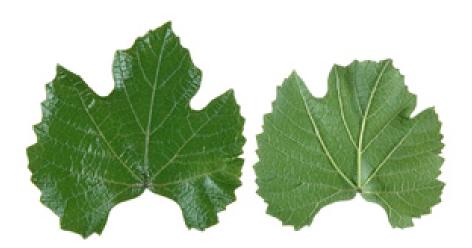


Image from: UC Integrated Viticulture

Leaching

- Natural rainfall
- Irrigation in excess of vine needs
- Subsurface drainage below root zone
- Addition of soil amendments (Calcium)
- Reclamation should be conducted when soil salts reach threshold
- Winter months, following significant rainfall is more practical

Leaching Requirement

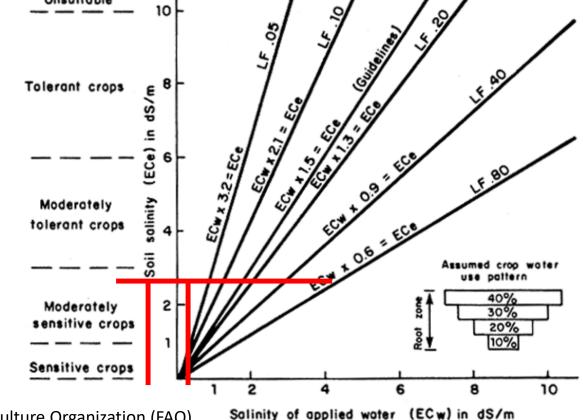


Figure from: Food and Agriculture Organization (FAO)

- Gypsum (CaSO₄·2H₂O) banded under vine row or injected
- calcium exchanges with sodium on soil exchange sites
- sodium can be leached beyond rooting zone

	Exchangeable Sodium Percentage					
Soil Texture	10	15	20	30	40	50
		Gypsum (tons per acre)				
Coarse	1.1	1.7	2.3	3.4	4.6	5.7
Medium	1.9	2.9	3.8	5.7	7.7	9.6
Fine	2.7	4.0	5.4	8.0	10.7	9.6

Gypsum Rate Based on Exchangeable Sodium Percentage

4 The University of Arizona Cooperative Extension

Table from: Arizona Cooperative Extension (AZ 1413)

Other Soil Amendments for Correcting Saline and Saline-Sodic Soils

Table 2. Summary of conditions appropriate for various soil additives.

	Soi	l pH	Comments	
Material	<7.0	>7.0	Comments	
Acids	NO	YES*	Only effective in calcareous soils (*calcareous soils usually have pH>8.0)	
Gypsum	YES	YES	Will not change soil pH	
Lime	YES	NO	Raises soil pH; not soluble in higher pH soils	
CaSO4	YES	YES	Dissolves more slowly than gypsum; will not prevent surface crusting	
CaCl ₂	YES	YES	Can raise soil salinity to unacceptable levels	
Ca(NO ₃) ₂	YES	YES	Can raise soil salinity to unacceptable levels if used as a Ca source	

The University of Arizona Cooperative Ex

Table from: Arizona Cooperative Extension (AZ 1413)

Other Strategies to Improve Soil Structure

- Cover cropping
- Organic matter
- Mulch

May have to install a drainage ditch or tile to remove excess water and salt

Drastic measures may be required

 Dig out clay lens and mix with another soil to improve drainage

• Reclamation efforts are often directed at improving soil drainage

If the soil drains, there may not be a salinity problem

Manures

High salt content

Can tie up iron and zinc

- militar instant

Sodium in Wine

- How do sodium and chloride affect the flavor of wine?
- contribute flavors that are described as soapy and salty

- Detection threshold of sodium in wine
- White wine: 1.1 g/L
- Red wine: 1.3 g/L

