3/28/2018

Prevention of Common Wine Faults

Luke Holcombe 707-790-3601 cell lukeh@scottlab.com

Winemaking Summarized

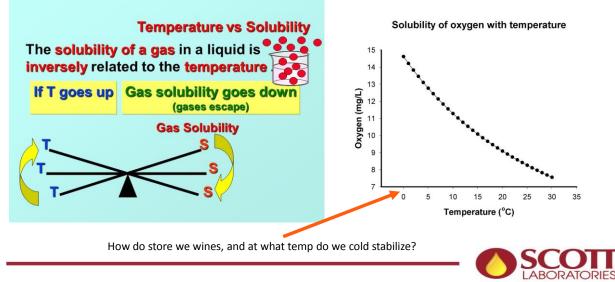
What are the most Common Faults?

- Oxidation
- Volatile Sulfur Compounds (VSC)
- Microbial Faults
- Protein and Tartrate Instability
- "Cork" Taint
- "cooked" wine
- Geranium Taint

Oxidation

- Other than being my passion topic, it's the most common wine flaw
- Exacerbated by smaller container size and headspace
- We all know "bottle shock" but is there "barrel shock?"
- Catalyzed by metals specifically iron and copper
 - Copper content greatly increases oxidation reactions

- Preventative measures
 - Careful handling
 - Judicious SO2 monitoring
 - Minimal movements
 - Inert gas usage
 - Temperature control
 - Tannin load control/adjustment
 - Metal content control/adjustment


pH	Free SO ₂ (ppm)	Free SO ₂ (ppm)
2.9	10	6
3.0	13	7
3.1	16	10
3.2	21	12
3.3	26	14
3.4	32	17
3.5	40	23
3.6	50	30
3.7	60	37
3.8	77	47
3.9	97	62
4.0	>120	83

- Minimal movements
 - Market typically demands a brilliant, clear, stable product
 - What does this require of us? Settling, fining, filtering
 - Settling: occurs more rapidly at lower temps
 - Fining: use of potentially stripping, sometimes animal-derived products
 - Filtering: potentially frustrating, \$\$\$ in time, labor, materials, equipment

DO/SO2/Buffering Management

Inert Gas

- Nitrogen: lighter than air, cheap, effective gas scrubber, low solubility
- CO2: high solubility, inefficient DO scrubber, heavier than air, cheap, available in many forms
- Argon: low solubility, heavier than air, expensive

ABORATORIES

PLEASE VENT YOUR TANK

Already at saturation	Action in cellar	Dissolved O ₂ (mg/L)
• The take-aways:	Topping	1
– CO2 and Argon for headspace	rumping	1-2
management	Filtration	0.5 - 2.5
 N2 scrubbing at all times 	Racking	2 - 5
 Cold wine=more dissolved gasses 	Racking with O_2	4-8
 Example (thank you Bradley 	Centrifugation	15-2.5
Beam)	Cold stabilization	3.5-6
 – 1.5 mg/L O2 absorbed in first hour 	Bottling	0-4
 Saturated (8mg/L) by hour 4 	Transport (full tank)	0-6

DO/SO2/Buffering Management

- OK, so you want to be a hippie ninja winemaker? How do you manage?
 - Tannins
 - By addition or by extraction
 - Slow and low winemaking
 - Know your tannin load and oxidative exposure
 - pH and SO2 balance
 - Container management
 - Manage metal content
 - SIY, PV products, chitosan

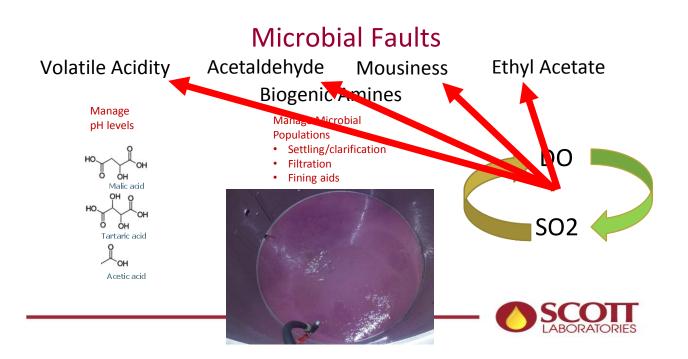
DO/SO2/Buffering Management

- Lees and SIY usage
 - Lees Longevity
 - PURE-LEES LONGEVITY[™] O2 consumption rate for a dose rate at 40 g/hL is 1.7 mg/L dissolved oxygen. If the dose rate is doubled, the level of O2 consumption also increases. Consumption rate by this SIY yeast = 0.7 mg/L O2 per hour
- Can we use lees more effectively?

• Yeast Handling

Volatile Sulphur Compounds

- Do not shock your yeast. Use rehydration nutrients and rehydrate at the recommended rate and rehydration protocols. ATEMPERATE
- Pitch over the top
- Protect against thermal and osmotic stress
- Prevent mechanical damage
- Yeast nutrition
 - Organic vs inorganic nutrition
 - Hitting a target YAN may not solve all the problems
 Sugar crash
- Oxygenation of yeast starter?

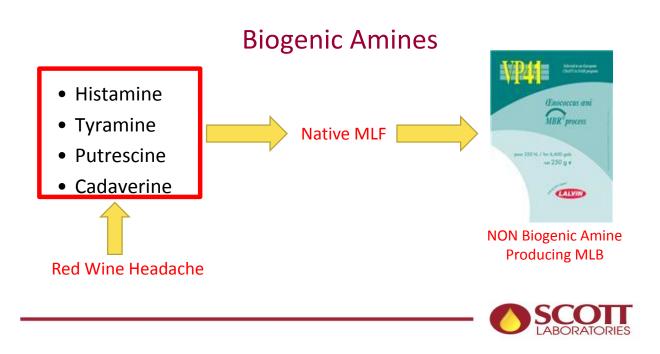


Volatile Sulphur Compounds

- Elemental S from the vineyard can be a source
- Splash racking oxidizes the H2S into less volatile, but more persistent compounds
- During fermentation, generally, oxygenation is good thing
 But once fermentation is finished, generally, restrict O2
- Control fermentation rate
- By putting wines in a reductive state, a winemaker has the ability to deal with the "reductive" issues that can arise

pH Control

pH and Wine characteristics


	Low pH (3.0 – 3.4)	High pH (3.6 – 4.0)
Oxidation	Reduced	Increased
Color Strength	Increased	Reduced
Type of Color	Ruby	Browner
Protein Stability	More Stable	Less Stable
Bacterial Growth	Less	More
		Ref: Elsenmann 1999

<u>http://www.wineadds.com/acid</u>

<u>https://www.winebusiness.com/tools/?go=winemaking.calc&sid=5</u>

- Reds: tartaric acid
- Whites:
 - 2/3 tartaric
 - 1/3 malic
- Bench trials
- 75%-85% of calculated add
- Touch up

Preventing Microbial Faults

The Take-Aways

- Timely Processing
- Fermentation management
- Microbial population reduction/control
 - Aka temperature control, pH management, SO2/DO, clarity

And, As Always: HYGEINE AND SANITATION

Protein and Tartrate Instability

- Protein Instability
 - Fermentation Tannins
 - Preventative Addition
 - Bentonite
 - Curative Subtraction

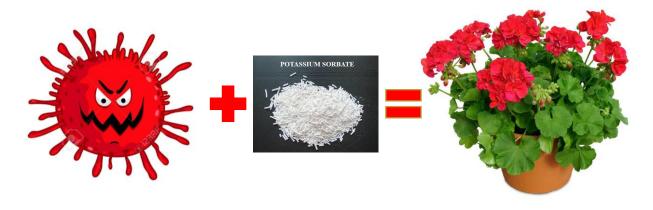
- Tartrate Instability
 - Traditional cold crash
 - Tartrate inhibitors
 - Potassium and Calcium levels

"Cork" Taint

- Not necessarily from cork
- Not Just TCA, but other halogenated anisoles
- Limit presence of halogens
 - Chlorine, bromine, etc
 - Prevent mold growth
- Limit Phenolic sources
 - Wood, cardboard, plastics, rubber, etc

http://industrial.airocide.com/wine/

BUY GOOD CORKS


"Cooked" Wine

- Maintain proper storage temperatures
- Control fermentation
 temperatures
- Work with distribution to ensure proper handling and storage

Geranium Taint

Geranium Taint

- Actually a microbial defect
 - When using sorbate, must control bacterial populations
 - Again, SO2/DO, population control
 - Could eliminate Sorbate usage
 - Sterile filtration
 - Velcorin

