

Drip Irrigation Operation and Management

Charles Swanson

Extension Program Specialist –Landscape Irrigation LI16931

Irrigation Technology Program

Texas A&M AgriLife Extension Service

Biological and Agricultural Engineering Unit College Station, TX 77843-2117

Drip Irrigation

- Has a long history in Agricultural Applications
- Often promoted as an "Efficient" alternative to sprinkler or flood irrigation methods
- In Truth....
 - "Only as efficient as the person behind the design, installation and management of the system"

Drip Components

Operation and Maintenance

Components of Drip Systems

- Manual or Remote Control Valve
- Drip Products
- Flow Meter
- Pressure Gauges
- Pressure Regulators
- Backflow Prevention Devices
- Screens & Filters
- Flushing Valves
- Injection Equipment

Drip Products

- Drip Products used in Vineyards
 - Drip Tubing
 - Point Source Emitters

Drip Tubing

- Poly Tubing with drip emitters inside the tubing
- Emitter Spacing is set in the manufacturing
 - Common spacing's: 6", 12", 18" & 24"
- Limited Emitter Flow Rates
 - Flow Rates Vary from .26 GPH to 1 GPH
- Most often used for buried applications

Point Source-Insert Emitters

- Emitters are inserted into a poly tubing at user designed spacing's
- Emitter flow rate can vary from .5 GPH to 24 GPH
- Some emitters are pressure compensating
- Often not rated for direct burial

Drip Specification - Performance

NonStop Drip Emitters

Nominal Performance

Flow Meters

- Flow meters help growers monitor water usage
- System flow rates will vary based on design and number/size of emitters
- Knowing flowrates helps: scheduling, maintenance, chemigation, etc.

Pressure Gauges

- Every Irrigation System/Station has a design pressure
- Monitoring pressure helps identify if/when maintenance maybe be needed
- Pressures > Design
 - Clogging Concern?
- Pressure < Design
 - Leak Concerns?

Backflow Prevention Assembly Devices

- Safety device which prevents the flow of water from the irrigation system back to the water source
- Typically required on systems that use potable water, groundwater or chemigation
- 4 Main Types of Backflow Devices
 - Atmospheric Vacuum Breaker AVB
 - Double Check Assembly DC
 - Pressure Vacuum Breaker PVB
 - Reduced Pressure Principle Assembly RPZ

Backflow Devices

• AVB

• PVB

• RPZ

Pressure Regulators

- Drip products vary in their pressure requirements
 - 10 PSI to 50 PSI+
- Some systems require pressure regulators to achieve manufacturers recommended pressure requirement
- Some devices have pressure regulators built in
- Often installed after the station valve

Screens & Filters

- Used to catch plastic and sediment in the irrigation water
- Prevent clogging of emitters and valves.
- Should be checked at least seasonally for concerns

Screens & Filters

- Screen filters are used for drip systems connected to municipal water sources and other "clean" water sources such as groundwater
- Sand media filters or disc filters may be required for drip systems connected to surface water (rivers, lakes, ponds, etc.)

Filters

- Drip irrigation systems MUST include a filter
- With groundwater, a screen (mesh) filter is normally satisfactory
- Choose the mesh size of the filter using manufacturer's recommendation for the exact product being used

OPERATING SPECIFICATIONS

- Recommended pressure range: 20 to 50 PSI
- Minimum filtration 150 mesh; 100 microns

OPERATING RANGE

- Pressure: 8.5 to 60 psi (,58 to 4,14 bar)
- Flow rates: 0.6 and 0.9 gph (2,3 l/hr and 3,5 l/hr)
- Temperature: Water: Up to 100°F (37,8° C) Ambient: Up to 125°F (51,7° C)
- Required Filtration: 120 mesh

Flushing Valves

- When sediment becomes trapped in the drip product, a flushing valve is used to remove it
- Flushing valves can be automatic or manual.

Chemigation Injectors and Pumps

The most common types:

- Mechanical
 - Piston (positive displacement) pumps
 - Diaphragm pumps
- Venturi meters

Piston/Positive Displacement Pumps

- Uses a "piston" to inject chemical into the irrigation water
- Rate is determined by the
 - length of the stroke
 - number of strokes per minutes
- Chemicals come into contact with piston, so materials should be matched to prevent corrosion

Piston/Positive Displacement Pumps

Injection rate remains constant and does not change if the irrigation pipeline pressure varies

- Injection rates cannot be adjusted while operating
- Commonly used to inject fertilizer (large rate injection)

Piston/Positive Displacement Pumps

Diaphragm Pumps

- A membrane separates chemical from the drive mechanism (piston)
- Easy to adjust flow rate while operating
- Commonly used for low-rate injection (pesticides, etc.) or continuous injections (chlorine or acid to lower pH)
- Easy to calibrate and maintain

Diaphragm Pump

Venturi Meters

- Simple device with no moving parts
- The meter used a reduced diameter throat tube (or a tube with a needle valve or orifice plate)
- Velocity changes in tube create vacuum to pull chemical into stream
- Venturi Meters are sized based on system flow rate, pressure and desired injection rate

Venturi Meters

- Most low-end venturi injectors are not adjustable and have a constant proportion injection rate such as 1:50
- (one gallon injected for every 50 gallons flowing through meter)

Venturi Meters

Chemigation Practices

Chemigation

<u>General term that includes:</u>

- Fertigation
- Insectigation
- Fungigation
- Nematigation

Advantages of Chemigation

- Uniformity of application
- Precise application
- Economics
- Timeliness
- Reduced soil compaction and crop damage
- Operator safety

Disadvantages of Chemigation

- High management
- Additional equipment
- Must calculate injection rates and volumes

Chemigation and Regulations

- General Classes
 - Controlled Substances
 - Pesticides and Herbicides
 - Fertilizers and Nutrients
 - Drip Maintenance/Clogging Control Chemicals
 - Chlorine and Acids

Controlled Substances

- Pesticides and Herbicides
 - Highly regulated by the EPA and States (TCEQ)
 - Regulations cover labeling, mixing/injection, and equipment
 - Regulations designed to protect the environment, human health and water supplies
 - State Licensing Requirements

Fertilizers

- Frequently injected into drip irrigation systems
- Dry and Liquid formulations are available
- Liquid formulations are more expensive but are very convenient
 - Can be injected directly (without mixing with water) with a variable rate injector.

Fertilizers

- Fertilizers containing phosphorus and sulfur may react with calcium and/or magnesium in irrigation water
 - Forming precipitates that could clog emitters
- Micronutrients can also cause precipitates
- Consult with supplier before use or test prior to injection

The US EPA's Label Improvement Program (LIP)

- Established in the 1980's
 - Fully implemented in 1988
- States were required to implement regulations at least as stringent as proposed by the EPA
- Labels must state whether product is approved to be applied through the irrigation system
- Application instructions are provided
- Requires use of specific safety equipment and devices designed to prevent accidental spills

CHEMICAL INJECTION SAFETY CONNECTIONS

Clogging Control

Chemigation

Types of Clogging

- Biological
 - Aglae
 - Bacteria
- Mineral
 - Iron
 - Calcium/Lime
 - Salts
 - Etc.

Chlorine

- Injected to control biological clogging of lines and emitters
- Household bleach is often used in small systems (5.25% chlorine)
- 5 ppm solutions commonly used
- Higher concentrations (up to 100 ppm) if iron bacteria and/or organic matter are problems

Chlorine

- Chlorine concentration at the end of the drip line should be:
 - 1 to 2 ppm for occasional treatment
 - 0.5 to 1 ppm for continuous treatment
- Begin with a low concentration (5 ppm to 10 ppm) for one hour

Useful Conversion Factors

- 1 ppm = 1 mg/l
- 1 ppm = 1 mg/kg
- 1 % = 10,000 ppm
- 1 % = 1.33 oz (by weight) per gal of water
- 0.1% = 1000 ppm

- Acid is injected to control mineral clogging of emitters
- Water with a high pH (>7.5) or

"moderate" to "hard water" (>60 ppm Ca) more likely to cause problems

- 98% sulfuric acid is commonly used in drip irrigation
- Citric acid or vinegar can be used in organic farming
- Titration can be used to determine concentration of acid need
- (adding acid to a sample of the water to see how much is required to lower pH)

- Laboratories can do a titration analysis which will determine the amount of acid needed to lower the water to a certain pH
- the injection rate (gal per hour) of acid is calculated by

 $IR = (A \times Q \times 60) / 326,000$

IR= injection rate, gal per hr

- A = gal of acid needed to lower pH (per ac-ft)
- Q = Flow rate of irrigation system (gpm)

- Experimentation is used in absence of titration
- Acid is injected until pH is lowered to 6.5 (measured at end of drip line)
- Higher concentrations are added if needed, lowering pH to as low as ~4
- Acid is corrosive inject downsteam of filter if made of metal
 - Pay attention to any metal components in the irrigation system

Water Quality

- Highly Recommended water sources be tested prior to any chemigation to avoid negative reactions
- TAMU Soil Testing Lab has specific analysis for water used in drip irrigation
 - More info at http://SoilTesting.tamu.edu

1. Routine Analysis (R)	\$25 per sample
(Conductivity, pH, Na, Ca, Mg, K, CO ₃ ² , HCO ₃ , SO ₄ ² , Cl [*] , P,	
B, Nitrate-N. Hardness, and SAR)	
2. R + Metals	\$40 per sample
In addition to Routine Analysis includes: (Zn, Fe	, Cu, and Mn)
3. R + Titrate of Drip Irrigation	\$33 per sample
4. R + Metals + Titrate for Drip Irrigation	\$47 per sample
5. R + Metals + Heavy metals and Fluoride	\$75 per sample
In addition to test number 2, includes As, Ba, Cr, Cd, F, Ni, Pb.	
Hardcopy mailed to address listed above	\$2 per invoice

Questions?

- Charles Swanson, M.Agr.
- LI0016931
- Extension Program Specialist-Landscape Irrigation
- Biological & Agricultural Engineering Unit
- Texas A&M Agrilife Extension Service
- <u>clswanson@tamu.edu</u>
- 979-845-5614

