Wine Faults

Luke Holcombe
lukeh@scottlab.com
707-790-3601 cell

When Good Wines Go Bad!

- Classification of Wine Faults:
 - Chemical
 - Physiochemical
 - Microbial
 - Environmental/Contact

Chemical Wine Faults

- Oxidation/reduction
 - Browning
 - Pinking
 - Post Bottling formation of Volatile Sulfur Compounds
 - Aceteldehyde
 - "Source Code"
- Legal Limits
- Ethyl Carbamate

Oxidation/Reduction

- Browning
 - Common problem in bottled wines
 - Usually, this is developed in the cellar, and exacerbated as container size decreases
- Pinking
 - In white wines, when handled reductively, can "pink" when exposed to air (bottling)
 - Brown Juice vs Green Juice

Post Bottling VSC Formation

- Depending on how the wine was processed (DO content), these VSC can express themselves post bottling
 - They can also show up in the cellar post fermentation
 - "reductive" conditions promote the development
 - Splash racking temporarily masks VSC, but causes more problems
- Judicious Dissolved Oxygen management can help prevent this
- Usage of appropriate closure for wine type and aging potential

Oxygen "Source Code"

- Dissolved Oxygen
 - Levels and exposure can vary wildly
 - Handling and processing techniques
 - Temperature

	Operation: Wine Transfer	Temperature (°F)	Average mg/L O2 pickup
	Bottom Tank Pumping	70	0.5
	Bottom Tank Pumping	50	1.3
-			
	Splash Racking	n/a	7
	Splash Racking	n/a	7

Action in cellar	Dissolved O ₂ (mg/L)
Topping	1
Pumping	1 - 2
Filtration	0.5 - 2.5
Rasking	2 - 5
Racking with O ₂	4 - 8
Centrifugation	1.5 - 2.5
Cold stabilization	3.5 - 6
Bottling	0 - 4
Transport (full tank)	0 - 6

Oxygen "Source Code"

- Oxygen exposure decreases Free SO2 content
 - This, in turn, reduces it's anti-microbial function
 - High pH levels exacerbate this phenomena
- Oxygen is necessary for certain spoilage microorganisms
 - Non-Saccharomyces require more O2 that Saccharomyces
 - Acetobacter and Gluconobacter
 - Brettanomyces (produces sig higher levels of VA in presence of O2)
 - "Flor/Sherry" yeasts require High DO levels to grow

Legal Limits

- To be considered a "fault," a compound must exceed the legal limit, and therefore be unsaleable
- US limits can be different than other countries
 - Important for export
- In the case of SO2, Free SO2 levels >60ppm can be detected sensorally
 - Can be unpleasant, or cause a reaction (sneezing?)
- For metals, can accelerate oxidative reactions and potentially cause hazes

Ethyl Carbamate

- Formed slowly after fermentation through a chemical reaction from nitrogenous (mainly urea) precursors and ethanol
- Greatly influenced by storage temperature
 - For each 1ppm of urea present:
 - 0.15 μg/L @ 13.3°C
 - 0.60 µg/L @ 18.6°C
 - 2.2 μg/L @ 23.9°C
- Suspected to be a carcinogen
 - Voluntary target of 15ppb.....

Physiochemical Stability

- Colloidial stability: refers to the wines ability to maintain solubility of various compounds
 - Unstable wines can drop sediment in the bottle
 - Typically all wines are unstable at some age
- Pinking reductive handling as juice
- Browning- caused by improper SO2 and DO management
 - Also linked with acetaldehyde production
 - Can be associated with VA production

Physiochemical Stability

- Tartrate formation
 - Calcium vs Potassium Tartrate
 - Crystal formation
 - Impacted by soil chemistry
 - Ca instability exacerbated by higher pH levels
 - Traditional chilling techniques can be effective
 - Can greatly increase oxygen solubility
 - Tartrate crystal inhibitors
 - Claristar-can be used on reds, roses, whites
 - CMC- only used on white wines that are very heat stable, can cause filtration problems, difficult to handle
 - Bench trials are important for both, neither are effective on calcium tartrate

Physiochemical Stability

- Haze formation
 - Different than microbial cloudiness
 - Pectin haze (particularly Concord)
 - Metal haze (use of non stainless metallic cellar tools, CuSO4, bentonite)
 - Protein haze (heat stability)

Physiochemical Wine Faults

- Effervescence
 - Can be pleasant in some wines
 - Can be derived from microbial activity or addition of CO2/dry ice
 - ~700ppm = tactically perceivable
 - ~1000ppm = bubble formation
 - Inversely soluble with temperature(pushing corks)
 - Sparging with high purity Nitrogen can eliminate it

- 4EP/4EG
- Mousiness
- Ropiness
- Biogenic Amines
- Ethyl Acetate
- Volatile Acidity

- Volatile Sulfur Compounds
- Acrolein
- Mannitol
- Geraniol (Geranium Taint)
- Diacetyl
- Effervescence
- Haze

• 4EP/4EG/4EC

- 4-ethylphenol: "medicinal" "band-aid"
- 4-ethylguaiacol: "spicy" "smoky"
- 4-ethylcatechol: "savoury" "sweaty/cheesy" "barnyard/animal"
- produced in differing quantities by strains of Brettanomyces
 - Affected by strain of Brett, substrates, growth factors, etc
- Some LAB can conduct an intermediary metabolic function in the production of these compounds (ie brett and bacteria symbiosis)

Microbial Wine Faults

Mousiness

- Not "odor-active"
- Not perceptible at wine pH's
- Described as "mouse urine" "candy corn" "popcorn"
- Usually produced by LAB, but also Brett
- Depends on a persons sensitivity
- Expresses itself after the wine has been swallowed and the saliva in the mouth dilutes the wine acids and raises pH

- Ropiness
 - Typically produced by Periococcus and/or Leuconostoc
 - Polysaccharide formation
 - "oily" character

- Biogenic Amines
 - Histamine, Tyramine, Putrescine, Cadaverine
 - Produced mainly by LAB
 - Can cause anaphylactic responses
 - Headache, facial flushing, nausea, respiratory distress
 - Can be smelled as "putrid" "meaty" "cadaver"
 - Indication of poor winemaking practices, native MLF
 - Using a commercial strain can eliminate production

- Ethyl Acetate "nail polish remover"
 - Mainly produced by yeasts (native fermentations)
 - Low levels can contribute to complexity
- Volatile Acidity
 - Can be produced by AAB, LAB, and some yeasts
 - AAB: in the presence of high levels of DO
 - LAB: metabolism of sugar
 - Yeasts: native and stuck fermentations

- Volatile Sulfur compounds
 - H2S typically produced by yeasts, especially in stressed environments or unhealthy populations
 - Mercaptans: reactions develop from H2S and ethanol/methanol
 - Reacts with Copper Sulfate
 - Disulfides: oxidation of mercaptans (splash racking)
 - Persistant
 - Does not react with Copper Sulfate
 - Can be reduced back to mercaptans using ascorbic acid

- Acrolein
 - Produced by LAB
 - Can contribute to extreme bitterness in wines
- Mannitol
 - In high pH, sweet wines, some LAB can produce from fructose
 - "Viscous" and can cause an irritating finish
 - I perceive it as a corrosive finish, bitter, caustic, aggressive

- Geraniol (geranium taint)
 - The usage of sorbic acid (sorbate) in the presence of active LAB populations can lead to geraniol production
 - LAB utilize the sorbate as a carbon source
- Diacetyl
 - Inoculation of MLB after first racking can lead to higher leves
 - Pediococcus & Lactobacillus can produce elevated levels
 - "Butter"
 - Can be a stylistic tool, but can be objectionable in some wines

- Effervescence (CO2)
 - While desired in some wines, can be an indicator of spoilage
 - In most wine styles, it is objectionable
- Microbial haze
 - Reliable indicator of microbial bloom

Environmental/Contact Wine Faults

- Halogenated Anisoles
 - 2,4-dichloroanisole(DCA)
 - 2,4,6-trichloroanisole (TCA)
 - 2,3,4,6-tetrachloroanisole (TeCA) 2-methylisoborneol
 - pentachloroanisole (PCA)
- Plastic-like taints

Guaiacol

- Geosmin

- 2,4,6-trichlorophenol (TCP)
- 2,3,4,6-tetrachlorophenol (TeCP)
- penthaclorophenol (PCP)
- 2,4,6-Tribromoanisole (TBA)

Halogenated Anisoles and Cork Derived Compounds

- Most commonly found in corks, can also be found in barrels and other "wood" sources
- Can be environmental in the cellar
 - Bentonite and other materials can be a "sink"
- Cork Derived Compounds
 - There are a number of sensorally active compounds that can be imparted to the wine from contact with cork

Plastic-like taints

- Sources:
 - Bag in the box
 - Plastic Cellar vessels
 - Can liner interactions
 - Alcohol is a solvent, combined with high acidity (low pHs)

Ok, so what now?

- Control microbial populations
 - Fining, settling, filtration
 - Microbial control agents
 - Chitosan, chitin/glucan, velcorin, etc
- Proper SO2 and DO management
- pH control
- Cadence of processing (primary implantation, MLF, etc)
- Remediation
 - Fining agents, tannins, blending

