Nitrogen fertilization

materials,

rates and timing

Larry Stein, Texas A & M AgriLife Extension Service

Nitrogen deficiency

Fertilizers

- Not miracle products
- Nutrition is just one of the components of a sound production program

Fruit Nutrition

- 20 essential chemical elements
- C, H, O, and N 95% of plant solids
- Other 16

Other 16 Nutrients

- P
- K
- S
- Ca
- Mg
- Fe

- Mn
- Cu
- Zn
- B
- Cl
 - Mo

Co
Na
Si
V

Nitrogen- The Key Element in Striking the Fruiting/Vegetative Balance

Needed for amino acids and proteins

Essential for Chlorophyll

Critical Characteristics of Nitrogen

- Very Mobile in Soils (neg. charge)
- Very Mobile in Plants
- Soils Typically Very Low in Nitrogen
- Native Nitrogen in Soils Consists of:
 - Complex, Insoluble Unavailable
 Organic Compounds
 - Simple, More Soluble, Available
 Compounds in Soil Solution

Nitrogen is Universally Low in Our Soils

General rule of thumbusually just need N

Poorer soils – K, Mg, Mn, Fe, Zn and B may develop
P, Ca, S and Cu deficiencies are rare

Pale green to yellow leaves

Red to brown spots

Restricted shoot growth

Practical Nitrogen Sources

Anhydrous Ammonia	82	47	Very volatile
(NH ₃)			Liquid/Gas
Urea	46	75	Volatile Dry
$(NH_2 - CO - NH_2)$			Material
Ammonium Nitrate	34	105	Dry Material
(NH ₄ NO ₃)			Less Volatile
Nitrogen Solutions (UAN)	28-32	74	Volatile, Usually
Urea +NH ₄ NO ₃ + water			Injected in Drip
Ammonium Sulfate	21	69	Volatile on High
(NH ₄) ₂ SO ₄		-	pH soils

* Compared to Sodium Nitrate (=100)

Manures - Be Cautious

 Little Control on Nitrogen Availability to the trees

Weed Seed Contamination?

Potential High Salt Content

Keys to Nitrogen Management

- Promote Growth Early in the Season
- Maintain Healthy Canopy Until First Frost
- Small, Frequent Applications Most Economical
- Use Caution on Young Vines
- Foliar Applications May Have Value Post-Harvest

Nitrogen Fertilizer Timing & Placement

- <u>Broadcast</u> First Application in Spring? (Rainfall Dependent)
- Make Nutrients Available to As Many Roots As Possible

Determining Nitrogen Needs

- Petiole Sampling at Bloom
- Sample Correctly
 - **50-100% Bloom**
 - Subtending Leaf of Medial Cluster;
 opposite the cluster

Tissue & Timing?

- Yields Are Usually Suppressed Even Before Nitrogen Deficiency Symptoms are Evident
- Nitrogen Levels Between Bloom and Veraison Fluctuate Greatly Between Sites, Varieties and Between Vines
- N Levels in Leaf Blade Varies More Greatly than That in Leaf Petioles

Best Guide For Analyzing Nitrogen Program in Bearing Vines?

- 1.) Trellis Fill
- 2.) Leaf Color
- 3.) Leaf Retention Post-Harvest

Nitrogen Deficiency

Nitrogen Fertilizer Timing & Placement

- Summer Applications May Be Best Applied Through Drip System
- Small, Frequent Doses are Most Cost Effective

Foliar Nitrogen Fertilization

- Remember, Nitrogen is a MACRO Nutrient
- May Make Sense in the Fall to Simply Maintain a Healthy Canopy

– 5 lbs. per 100 gallons

What Tools Do We Have to Manage Grapevine Vigor?

- Water
- Weed Control
- Pruning/Crop Control
- Rootstocks
- <u>Nitrogen</u>

Situations to Avoid

- High Nitrogen
 Applications in
 Vineyards Still At
 Risk From Frost
- Excessive N Status at Bloom
 - Shatter
 - Poor Flower Bud Initiation

Situations to Avoid

- Over Fertilize
 Naturally
 Vigorous
 Varieties or
 RS/Variety
 Combinations
- Being Unprepared to Manage Weed Growth

Effect of N Source on Ammonia Volatilization

McFarland

Ammonia Volatilization

Occurs when:

2) Ammonium fertilizer is surface applied to calcareous soils. (e.g., ammonium sulfate)
 (NH₄)₂SO₄ + CaCO₃ → CaSO₄ + NH₃[†] + CO₂

- Controlled by the solubility of the Ca reaction product.
- Influenced by soil moisture content which promotes reaction.
- Managed by incorporation (>1 inch sufficient to significantly reduce potential for loss).

Ammonia Volatilization

Occurs when:

3) Urea is surface applied to any soil. $(NH_2)_2CO + H_2O \xrightarrow{Urease} (NH_4)_2CO_3$

 $(NH_4)_2CO_3 \longrightarrow CO_2 + H_2O + NH_3$

- Soil moisture conditions important in promoting reaction, losses minimal in dry soils.
- Temperature important in increasing evaporation and microbial activity, loss minimal below 50 F.
- Loss potential greater from high pH soils, due to formation of NH₄ in acid soils.

Effect of pH On Volatilization Loss of NH₃ From Surface Applied Urea

% NH₃ Loss

McFarland

Precautions for Efficient Use

Volatilization of Ammoniated Fertilizers $NH_4^+ \rightarrow NH_3^\uparrow$

Potential Loss

35%

surface applied to any soil

Ammonium sulfate25%Ammonium nitrate7%

surface applied to calcareous soil

McFarland

Urea

Effect of Urea Fertilizer Placement on NH₃ Volatilization

Nitrogen Loss	
20%	
15%	
12%	
6%	

*Rainfall/irrigation (> 0.25") also can accomplish incorporation.

McFarland

