Managing Acidity in the Vineyard and the Winery

Dr. Andreea Botezatu

Asst. Professor and Enology Extension Specialist June 2017

A GRILIFE EXTENSION

Factors affecting acidity

- Variety
- Temperature (esp. during ripening)
- Shade/exposure
- Crop level/balance
- Plant nutrition/soil fertility/soil moisture

Factors affecting acidity

Fruit Composition

- Organic Acids
 - Tartaric, malic, citric, others
 - Ratio of tartaric to malic depends on variety and temperature during ripening (0.6 to 3.4)
- Breakdown of malic acid during ripening accounts for decreasing titratable acidity
 - High temps = low TA, esp. malic acid levels
- Tartaric acid is converted to K+ salt forms which causes pH to increase

Interaction of Variety Ripening Season and Temperature

Fruit quality is best when ripened under <u>warm days</u> and <u>cool nights</u>

⊙Early ripening grapes in a long season, hot area: Excess heat (especially night temps >60°F)

• High sugar, low acid, high pH, poor color, poor flavor & aroma

⊙Late ripening grapes in a short season, cool area: Insufficient heat (especially daytime temps <70°F)

• Low sugar, high acid, low pH, unripe herbaceous flavors

⊙Some varieties have a tendency for high pH and high TA

- Black Spanish
- Tempranillo

Relative Time of Ripening

- Early ripening varietals
 - Blanc du Bois, Viognier, Tempranillo

- Late ripening varietals
 - Cabernet Sauvignon, Mourvedre, Black Spanish

Appropriate Harvest Decisions

- Sugar, acid and pH?
- Flavor, aroma?
- Skin and seed maturity?
- Problem with TX varieties
 - As we wait for complete phenolic maturity sugar increases, TA drops, pH increases
 - What guidelines will be used to harvest these? pH?

Effect of Sun & Shade on Acidity

• TA

- Excessive exposure of clusters leads to low TA
- Shaded canopy leads to low TA
- Shaded clusters leads to high TA
- ⊙ pH
 - Shaded canopy (3+ leaf layers) leads to high pH
 - Well exposed canopy (1-2 layers) leads to low pH

Effect of Crop Load on Acidity

• TA

- High crop load leads to high TA
- Low crop load leads to low TA

⊙ pH

- High crop loads leads to low pH
- Low crop loads leads to high pH

Soil and Plant Nutrition

- Soils deficient in K⁺ lead to plant health problems (poor growth, reduced cold hardiness, increased disease susceptibility, etc)
- K+ levels in soils are indirectly related to K+ levels in plants
- Excess K⁺ in soils will not lead to excess K⁺ levels in plants
 - Active uptake, enzyme site saturation
- Large rootstock effect
 - V. champinii increase K+ up to 2x
- Soil pH can be important
 - K is less available at low soil pH
 - High K and high pH can lead to excess K and Mg deficiency.
- Soil moisture is important... K⁺ must be in solution for uptake

Irrigation

- Higher TA at the end of ripening (Tempranillo)
 - results are not clear cut, so no consensus on the issue

1) Low TA and high pH (TA < 6g/L) (pH > 3.5)

2) Moderate TA and pH (TA 6-9g/L) (pH 3.0-3.5)

3) High TA and low pH (TA>9g/L) (pH<3.5)

4) High TA and high pH (TA>9g/L) (pH>3.5)

Low acidity wines

Acid additions

- Tartaric acid (most common)
- Citric acid
- Other acids (malic, fumaric, etc)

Blending

- Blending trials recommended
- Stable wines pre-blend can produce an unstable wine post-blend

⊙ Low acidity wines

- Acidic reserve additions
 - Underripe pre-harvested grapes
 - Either juice
 - Or wine
- No MLF
- Consider acid balance Index of Acidity
 - TA pH

- High acidity
 - MLF fermentation (lactic acid bacteria Pediococcus, Lactobacillus, and Leuconostoc)
 - TA can decrease by 1-3 g/L
 - The higher the initial pH, the higher the reduction
 - pH will increase by 0.1-0.2
 - Amelioration (adding...water and sometimes sugar to must)
 - TA drops
 - pH remains stable (must buffering capacity)
 - Legality?

- High Acidity (continued)
 - Calcium Carbonate additions
 - Single salt precipitation
 CaCO₃ + H₂T → CaT + H₂O + CO₂
 0.66 g CaCO₃ ↓ H₂T by 1 g
 - Double salt precipitation
 - To precipitate both calcium tartrate and calcium malate (2 salts)
 - Part of the wine is treated and then blended back
 - TA↓ pH↓

• High Acidity (continued)

Blending

- Blending trials recommended
- Stable wines pre-blend can produce an unstable wine post-blend

Sugar addition

- No chemical de-acidification but
- Sensory profile is improved, acidity is balanced by perceived sweetness

- - Lalvin C
 - Exotics
- ⊙ Plastering focuses on pH without affecting TA
 - For high pH & low/medium TA wine
 - pH can drop by 0.1-0.3
 - May cause Ca instability
 - May affect sensory profile

