Integrated Canopy Management of Vineyards

Jim Kamas

Associate Professor & Extension Fruit Specialist
Texas A&M Agrilife Extension Viticulture & Fruit Lab
Fredericksburg, Texas

Grapevine Carbohydrate Dynamics-Source/Sink Relationships

- Source-
 - Photosynthesis
 - Water
 - Nutrients
 - Light
 - Freedom From Biotic & Abiotic Stresses

Sink

- Shoots (Leaves, Petioles & Stems)
- Developing Fruit
- Roots
- Extended Woody Trunk

Balanced Vines

- Achieving a Balance Between Vegetative Growth and Reproductive Growth (Fruit Production)
- Produce Enough Vegetation to Optimally Ripen the Crop, Mature the Next Year's Fruiting Wood and Store Sufficient Carbohydrates to Support the Next Season's Initial Growth and Maximize Winter Hardiness

Concepts in Canopy Management

Site & Soils

- Deep Fertile Soils With Abundant Water Holding Capacity Are at the Highest Risk of Growing Excessively Vigorous Vines
- Shallow Rocky Soils May Provide Insufficient Rooting Depth And Limited Water & Nutrient Holding Capabilities and Vines May Struggle to Have Sufficient Vigor

Achieving That Balance Starts With Site Selection

- Understanding the Inherent Vigor of Sites Will Impact
 - Variety Selection
 - Rootstock Selection
 - Vine Spacing

Rootstock	Synonym	Parentage	Vigor	RS-9	RS-9	Ramsey x Schwarzman	Medium
Riparia Gloire	Gloire de Montpellier	V. riparia	Low/ Moderate	Kingfisher	PC01126-29	V. champinii x V. rufotomentosa x Riparia Gloire	High
Saint George	Rupestris du Lot	V. rupestris	Very High	Matador	PC0188-151	101-14 Mgt x (V. mustangensis x V. rupestris)	High
1616 Couderc	1616C	V. solonis x V. riparia	Low	Minotaur	PC0188-32	101-14 Mgt x (V. mustangensis x	High
3309 Couderc	3309C	V. riparia x	Moderate/			V. rupestris	
44.50	44 523 5	V. rupestris	High	GRN-1	8909-05	V. Rupestris x Muscadinia	Moderate/ High
Malegue	44-53M	V. riparia x 144M	Moderate	GRN-2	9363-16	V. rufotom entosa x V. Champinii	Low/ Moderate
101-14 Millardet Et De Grasset	101-14 Mgt.	V. riparia x V. rupestris	Low/ Moderate	GRN-3	9365-43	V. rufotomentosa x V. Champinii+	Moderate
Swarzmann	Swarzmann	V. riparia x V. rupestris	Low/ Moderate	GRN-4	9365-85	V. rufotomentosa x V. Champinii+	Moderate/ Hi≌h
41B Millardet Et De Grasset	41B	V. berlandieri x V. vinifera		GRN-5	9407-14	V. Champinii x V. Berlandieri x V. Riparia	High
420A Millardet Et De Grasset	420A	V. berlandieri x V. riparia	Low	110 Richter	110R		High
Oppenheim #4	SO4	V. berlandieri x V. riparia	Moderate	140 Ruggeri	140Ru, Ru 140	V. berlandieri x V. very Hig rupestris	
5BB Kober	5BB	V. berlandieri x V. riparia	Moderate	Freedom	Freedom	1613 C x V.champinii	High
5 C Tel eki	5C	V. berlandieri x V. riparia	Moderate	Harmony	Harmony	1613 C x V. champinii	High
1103 Paulsen	1103P	V. berlandieri x V. rupestris	High	Ramsey	Salt Creek	V. champinii	Very High
RS-3	RS-3	Ramsey x Schwarzman	Low	VR 039-16	039-16	V. vinifera x V. rotundifolia	High

Rootstock	Synonym	Parentage	Vigor	RS-9	RS-9	Ramsey x Schwarzman	
Riparia Gloire	Gloire de Montpellier	V. riparia	Low/ Moderate	Kingfisher	PC01126-29	V. champinii x V. rufotom entosa	
Saint George	Rupestris du Lot	V. rupestris	Very High	Matador	PC0188-151	x Riparia Gloire 101-14 Mgt x (V. mustangensis x	ζ
1616 Couderc	1616C	V. solonis x V. riparia	Low	Minotaur	PC0188-32	V. rupestris)	
3309 Couderc	3309C	V. riparia x V. rupestris	Moderate/ High	STEED SECTION		(V. mustangensis x V. rupestris	
44-53 Malegue	44-53M	V. riparia x 144M	Moderate	GRN-1	8909-05	V. Rupestris x Muscadinia	
101-14	101-14 Mgt.	V. riparia x	Low/	GRN-2	9363-16	V. rufotom entosa x V. Champinii	ζ
Millardet Et De Grasset		V. rupestris	Moderate	GRN-3	9365-43	V. rufotomentosa > V. Champinii+	ζ
Swarzmann	Swarzmann	V. riparia x V. rupestris	Low/ Moderate	GRN-4	9365-85	V. rufotomentosa	ζ
41B Millardet Et De Grasset	41B	V. berlandieri x V. vinifera		GRN-5	9407-14	V. Champinii+ V. Champinii x V. Berlandieri x V. Riparia	I
420A Millardet Et De Grasset	420A	V. berlandieri x V. riparia	Low	110 Richter	110R	V. berlandieri x V. rupestris	I
Oppenheim #4	SO4	V. berlandieri x V. riparia	Moderate	140 Ruggeri	140Ru, Ru 140	V. berlandieri x V. rupestris	
5BB Kober	5BB	V. berlandieri x V. riparia	Moderate	Freedom	Freedom	1613 C x V.champinii	I
5C Teleki	5C	V. berlandieri x V. riparia	Moderate	Harmony	Harmony	1613 C x V. champinii	I
1103 Paulsen	1103P	V. berlandieri x V. rupestris	High	Ramsey	Salt Creek	V. champinii	4
RS-3	RS-3	Ramsey x Schwarzman	Low	VR 039-16	039-16	V. vinifera x V. rotundifolia	ì

Medium

High

High

High

Low/

Moderate/ High

Moderate+

Moderate/

High High

High

High

High

High

Very High

Very High

Tools For Managing Vine Vigor

- Water
- Nitrogen
- Crop Load
- CompetitiveVegetation?

Why Do We Prune?

We Prune To Limit Crop

Prune Too Much- Excessive Vegetative Growth
Reduced Winter Hardiness & Production Potential
Prune Too Little- Poor Fruit Quality, Nominal Vegetative
Growth, Reduced Winter Hardiness & Productive Potential

Why Do We Prune?

We Prune To Invigorate Grapevines
Dormant Pruning Is An Invigorating Action
In Any Year, We Are Growing Two Crops

Why Do We Prune?

We Prune To Distribute A Canopy That Will Adequately Intercept Sunlight To Ripen A Crop

Estimating Vine Vigor & Capacity

Pruning Weights In Excess of 0.4# of 1 Year
Old Prunings /Linear Foot of Row, Border on Excessive Vigor


The Three Components Of Grapevine Pruning

- Bud Number
 - Bud Quality
- Bud Distribution

(Node) Bud Number

- The Fruit on Grapevines are Borne On Current Season's Growth
- Pruning is the Single Greatest Way Growers Control Crop Size
- Retained Node Number is a Function of Site, Variety & Target Maturity Indices

- ProperDiameter
- •Short Internode Length
- Well Exposed to Sun

Bud Quality

Bud Distribution (Training System)

- Vines Produce Large, Vigorous Shoots With Large Leaves, Long Internodes and Excessive Lateral Shoot Development
- Fruit Zone is Shaded Resulting in Inferior Fruit Quality With Exacerbated Powdery Mildew Pressure
- Shaded Fruit Zone Results in Poor Fruit Bud Development for Following Year's Crop
- Shaded Fruit Zone Creates Much Higher Disease Pressure for Late Season Rot Organisms
- Shaded Renewal Zone Results in Poor Periderm Formation and Increased Cold Susceptibility

Excessive Vigor

When Do We Prune?

- •How Many Vines Do You Have?
- How Much Money Are You Willing to Spend?
- Variety Pruning Order (last budbreak to first)

Insufficient Vigor

- Drought, Limiting Soils, Unmanaged Weed Competition, Disease Pressure, Insufficient Nutrients Can All Lead to a Sparse Canopy With Little or No Ability to Ripen a Crop
- Shoots & Fruit Compete for Carbohydrates, So Excessive Crop Load Can Also Lead to Insufficient Photosynthetic Capacity
- In Addition to Poor Fruit
 Maturity, Over-cropped Vines
 May Not Ripen Wood
 Sufficiently to Withstand
 Winter Temperatures.

- Excessive Vigor
 - Reduce Water
 - Reduce Nitrogen
 - Set Heavier Crop Load, then Thin
 - Establish Divided Canopy
- Insufficient Vigor
 - Increase Nitrogen
 - Increase Water Amount
 - Improve Vineyard Floor Management
 - Set Less Crop

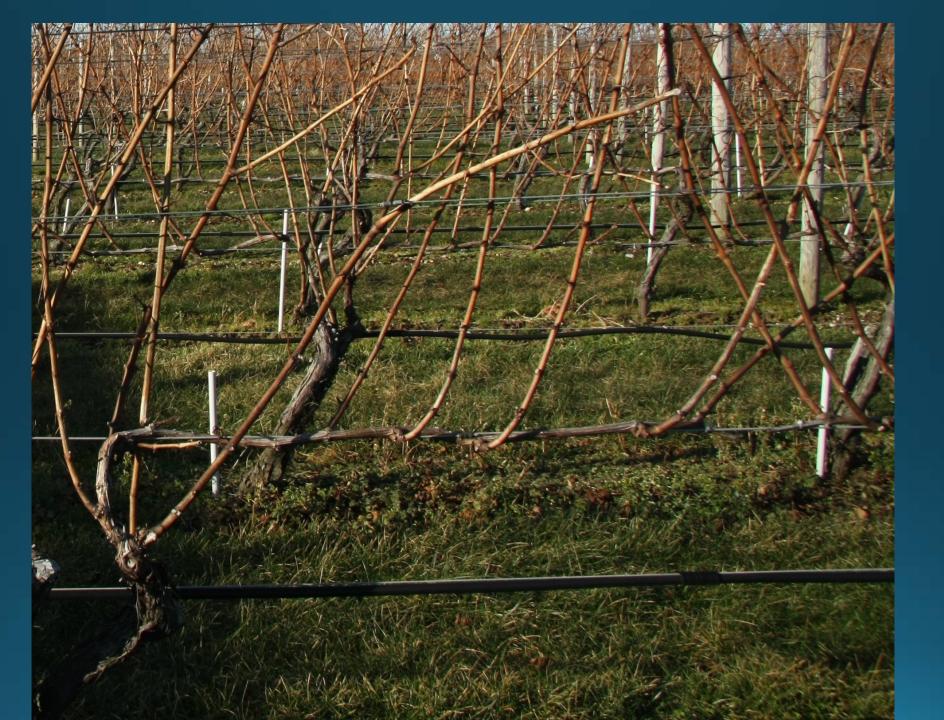
Making Corrections to Achieve Balance

- Primary Need is to Prevent Excessive Shading of Canopy
 - Leaves Produce
 Carbohydrates Through
 Photosynthesis Needed for
 Plant Growth and Fruit
 Maturity
 - Because They are Photosynthetically Inefficient, Shaded Leaves Compete With Fruit For Carbohydrates
 - Shaded Leaves May
 Contribute to Excessive
 Potassium Levels in Fruit
 Resulting in Elevated Must
 pH.

Sunlight Interception

- Shoot Density is an Integral Component of a Balanced Canopy
- Ideal Shoot Density is Between 3-5 Shoots Per Linear Foot of Row or Canopy
- Assuming Cluster Weights of 1/3 lb. each, with 2
 Clusters per Shoot, Vines
 Spaced at 10 x 6, with 5
 Shoots Per Linear Foot are
 Cropped at a 6.5 TPA
 Level. 3 Shoots Per Linear
 Foot = 3.9 TPA

Shoot Density



Shoot Density

- Shoot Density Can Be Addressed During Annual Dormant Pruning or Through Shoot Thinning Shortly After Budbreak
- Non-bearing Shoots
 May Be Removed, or in
 Some Cases Retained to
 Create New Spur
 Positions
- Remember, Summer Pruning is a Dwarfing Action!

- Shoot Positioning Is an Integral Part of Vineyard Management Regardless of the Training System
- The Goal is to Uniformly Distribute Leaf Area and Fruit to Minimize Mutual Shading and to Improve Fruit Exposure and Ventilation
- Can Be Very Time
 Consuming... Growers
 Seek Ways to Get Job
 Done Efficiently

Shoot Positioning

Shoot Positioning

- Shoot Positioning Should Be Conducted Several Times During the Year
- Should Begin When
 Shoots are
 Approximately 18" Long
 Before Tendrils Form
 Strong Attachments
- Shoots Remain Very
 Tender and Easy to Break
 Until Bloom When
 Lignification Begins

Trellis Configurations

Single Strand
Training Wires

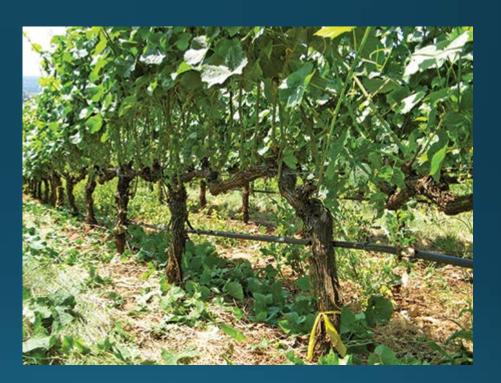
Trellis Configurations

Fixed Pairs of Catchwires

Moveable Catch Wires

Wires Can Be Moved From Lower T to **Higher T** Bringing Canopy **Up With** The Wires

High Cordon Systems


Summer Hedging

- Management Tool to Address Excessive Vigor
- Can Be Extremely Important, Especially in a Wet Year
- Vines are Topped Just Above Top of Post Removing Canes That Cause Shading
- Can Be Detrimental if New Forced Lateral Shoots Compete With Fruit for Photosynthates and Cause Excessive Lateral Shoot Growth

- Removing Leaves in Fruiting Zone Increases Air Flow and Light & Spray Penetration
- Can Significantly Reduce Rot and Powdery Mildew
- Can Improve Fruit Quality
 - Increased Color
 - Increase in Flavor Compounds
 - Decrease in pH and K⁺⁺
 - Reduce Vegetative Aromas

Selective Leaf Removal

Mechanical Options Are Available

And Don't Even Think About It

- Consider Removing Leaves only on the Shaded Side of the Canopy (East Side of N/S Rows or North Side of E/W Rows
- Start Early! Two to Three
 Weeks After Fruit Set
- In Our Climate, We are Only Looking For Partial Cluster Exposure

Practical Tips For Leaf Removal in Texas

Late or Excessive Leaf Removal Will Result in Sun Scalded Fruit

The Characteristics of An Ideal Canopy- Shoot Density

3-5 Shoots Per Linear Foot of Canopy or Row

Higher Values
Promote Shading
and Over-cropping
And Lower Values
Lead to Excessively
Vigorous Shoot
Growth and Low Yields

The Characteristics of An Ideal Canopy- Shoot Length

15-20 Nodes

Shoots With Less Than 15 Nodes are Symptomatic of Inadequate Vigor. Untrimmed Shoots Greater Than 20 Nodes Indicate Excessive Vigor.

The Characteristics of An Ideal Canopy-Lateral Shoot Development

Ideally None

Excessive Lateral Growth
Leads to Shade and Competes
With Fruit. The Presence of a
Few Laterals May Assist in
Maturation of Fruit & Wood

What Are The Characteristics of An Ideal Canopy- Growing Shoot Tip

Ideally Stopped

Best Scenario is For Shoot Tip To No Longer Growing By Véraison

What Are The Characteristics of An Ideal Canopy- Individual Cane Weights

Individual Canes Should Weigh Between 0.06-0.10 lbs per Dormant Cane.

Weights Below o.o6 lbs Suggest Inadequate Vigor. Canes Above o.1 lbs are Indicative of "Bull Wood" That is Low in Fruitfulness and Subject to Winter Injury

What Are The Characteristics of An Ideal Canopy- Ratio of Crop Weight to Pruning Weight

5-10:1

Values Less Than 5 are Indicative Of Under-cropping and Values Over 10 Are Considered Over-cropping. These Values, However Are Variety Specific

