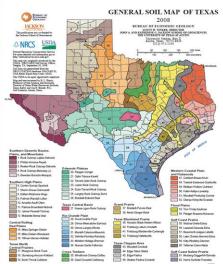


Objectives

- ●What is a Vineyard Fertility Plan?
- ●Importance
- ●Principles of Vine Fertility
- Methods of Fertility Assessment
- Prevention & Correction of Fertility Issues

What is a VFP?

- ⊙ A plan of action aimed at ensuring proper vine nutrition
- Should be done continually, but especially before you establish your vineyard
- "once the vines are in the fertility battle has begun"
- ⊙ Yearly records are critical



Importance

- Have a prevention and correction plan that will ensure healthy vines with quality fruit
 - save time, effort, and money
- Prevent overuse of fertilizers
- Every vineyard site is different
 - need to know your vineyard (process)

Role of Nutrients

- Essential for proper vegetative and reproductive growth
 - nutrients deplete over time

General deficiency issues include

- retarded growth, yield reduction, poor fruit quality
- foliar symptoms
- Increased disease occurrence and cold damage

Over-application

- excess vigor, poor fruit quality, increased disease, cold damage
- toxicity and death

Principles of Vine Fertility

⊙ all are essential

• motility and availability in soil and vine differ

Essential Nutrients for Normal Grapevine Growth and Development			
Obtained from Atmosphere and Water	Macronutrients	Micronutrients	
Carbon (C)	Nitrogen (N)	lron (Fe)	
Hydrogen (H)	Phosphorous (P)	Manganese (Mn)	
Oxygen (O)	Potassium (K)	Copper (Cu)	
	Magnesium (Mg)	Zinc (Zn)	
	Calcium (Ca)	Molybdenum (Mo)	
	Sulfur (S)	Boron (B)	
		Chlorine (Cl)	


Factors Affecting Availability

1. Climatic & weather patterns

precipitation, flooding, waterlogging, leaching

2. Soil profile

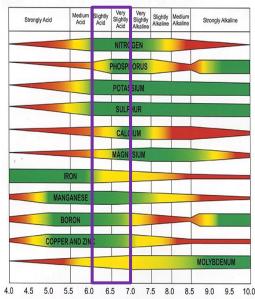
- texture, pH, salinity, and CEC
- water holding capacity, drainage capability, erosion
- 3. Vineyard design & practices
 - site, cover crops, weeds, cropping level, scion/rootstock
 - "perennial crop dilemma"

Nutrients are removed from the vine


Tonnage per acre	Lbs. N	Lbs. P	Lbs. K	Lbs. Mg
2	6	1	10	0.5
4	12	2	20	1
6	18	3.5	30	1.2

Adapted from: The Lodi Winegrowers Workbook. 2008.

Soil – Cation Exchange Capacity


Soil pH

- Affects mineral solubility
 - may be found in soil but not available
- Acidic soils
 - often find Mo, P, Mg, Ca less available
 - while Al, Fe, and Mn more available
- Alkaline soils
 - often find Fe and Zn less available

⊙ Amending Soil

• extremely challenging and costly

How soil pH affects availability of plant nutrients.

Nutrient Mobility in Vine

Mobile	Moderately Mobile	Immobile
Nitrogen	Manganese	Iron
Phosphorous	Copper	Zinc
Potassium		Molybdenum
Magnesium		Boron
		Calcium

- primarily a function of solubility in phloem sap
- Mobile: capable of moving from older to newer tissue
- Immobile: incapable, often see symptoms in new tissue EXTENSION

Methods of Measurement

Preventative vs. Corrective

Soil Sampling

Advantage

- gives potential nutrient availability
- may shed light on soil issues
- "baseline" so look for trends
- can be done pre-plant
- timing not as critical
- Disadvantage
 - does not show soil/vine interaction

Timing & Frequency

- Pre-planting ideal time to make soil corrections
- Often collected during Fall or early Spring
- ⊙ Do not take when ground is frozen
- Every 3-5 years thereafter, unless major amendment is made

Methodology

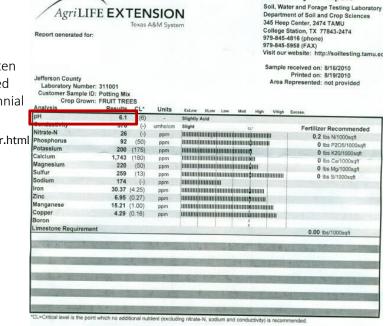
- 1. Choose several random locations (Z or W pattern) per block
- 2. Collect 10-20 "top-soil" samples by digging 8" deep per block
- 3. Collect "sub-soil" sample by digging 15-20" deep
- 4. Do not mix top and sub-samples
- 5. Dry and place in appropriate container
- 6. Mail off to Lab

Analysis

 Use the same lab or a lab that performs similar diagnostic tests for consistency

Target Values

Target Values f				
Elemental Nutrient	Soil (ppm)			
Nitrogen	-	*Use petiole analysis to verify Nitrogen content		
Phosphorous	20-50	because of many		
Potassium	75-100	different nitrogen		
Calcium	500-2000	forms, which may change over time.		
Magnesium	100-250	-		
Boron	0.3-2.0	Nitrate is often the form tested on soil		
Iron	20	analysis		
Manganese	20			
Copper	0.5			
Zinc	2			
Source: Wolf, T.K. 2008. Wine Grape Production Guide for Eastern North America				


> TEXAS A&M GRILIFE EXTENSION

Soil Analysis Report

Interpretation

- Note: lab test recommendations are often auto-generated and are generally geared towards annual crops rather than perennial
- Fertilizer calculator:

http://soiltesting.tamu.edu/webpages/calculator.html

Petiole Sampling

Advantage

- shows what the plant actually takes up
- traditional "gold standard"

Disadvantage

- timing is more critical than soil sampling
- more prep involved

Timing & Frequency

- 1. Bloom 50% -75% cap fall
 - micronutrient deficiencies can have season-long effect on fruit quality

2. 70 - 100 days post-bloom (veraison)

major phenological changes occurring

3. Diagnostic samples

- may be taken any time of year
- Should perform annually from year 1-4, then on a 2 year cycle thereafter

Methodology

- 1. Select "data vines" for consistency
- 2. Collect from a single block and var. (ideal)
- 3. Z or W pattern throughout block
- 4. Test same time each year
- 5. Select from healthy leaves that receive ample sunlight
- 6. Morning is best

1. Bloom

- collect 60-100 petioles from leaves located opposite of the first or second flower cluster
- no more than 2 petioles per vine, never on the same shoot (i.e. 30-50 data vines)
- <u>rinse</u> petioles with distilled water/soap
- I place in brown bag (breathable)
- dry at 80-90°F for 24 hours

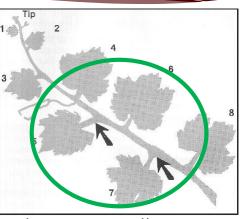
TEXAS A&M GRILIFE

Methodology

- 1. Veraison
 - same as bloom but collect from youngest fully expanded leaves (5-7 leaves back from tip)

2. Diagnostic

- collect 100 petioles from symptomatic leaves regardless of shoot position
- same position on non-symptomatic or healthy vines
- keep samples separated


Petiole Target Values

Expressed as either a % or in ppm

Nutrient	Bloom	Veraison
Ν	1.2-2.5%	0.8-1.4%
Р	0.15-0.4%	0.1-0.3%
К	1.5-3.0%	1.5-3.0%
Ca	1.2-3.0%	1.0-3.0%
Mg	0.5-0.75%	0.5-1.0%
Fe	30-100 ppm	30-100 ppm
Zn	30-100 ppm	30-100 ppm
Mn	25-1,000 ppm	100-1,000 ppm
В	25-100 ppm	30-100 ppm
Cu	6-25 ppm	6-25 ppm
Мо	0.5 ppm	0.5 ppm
Na	<1,000 ppm	< 1,000 ppm
Table	adapted from Jim Kamas – Growing Grape	TEXAS A&M

12

GRILIFE EXTENSION

Interpretation

Actual Analysis

slement	Sample	Satisfactory Range		
+ Potassium	3.17	1.30 - 2.00%	Do not apply K unless soil test indicates a need. High K may increase risk of Mg deficiency. Resample next year.	
Phosphorus	.202	0.10 - 0.30%	Omit phosphate from fertilizer program.	
Calcium	1.63	1.20 - 2.00%	Test soil and apply lime as needed to maintain calcium supply.	
Magnesium	.421	0.35 - 0.50%	Continue present magnesium program.	
Manganese	51.4	50-1000 ppm	If manganese-containing fungicides or manganese sulfate sprays were applied this year, their use should be continued.	
- Iron	24.0	30 - 100 ppm	Low iron levels frequently indicate impaired root activity related to physical damage, excessive or inadequate moisture, or pH effects. Consult Extension Specialist for specific recommendation.	
Copper	12.7	5 - 15 ppm	No correction is suggested.	
Boron	40.1	30 - 50 ppm	Continue present boron program.	
+ Zinc	51.1	35 - 50 ppm	High levels may be from fungicide contamination of the sample and do not represent a problem.	▲ TF

Visual Observations

Corrective phase

- Look at vine
 - growth and vigor
 - crop size
 - vine balance
 - deficiency symptoms
 - toxicity symptoms
 - note: visual symptoms may be result of plant stress, pest/disease pressure, or herbicide toxicity

Prevention & Correction

Now that you have your test results or you are noticing nutrient deficiencies in the field, what do you do next?

Macronutrients

Nitrogen

Typically the most deficient nutrient in the vineyard

• Very mobile in soil (Nitrate is anion) and plant

- orrections are more successful
- Bloom petiole readings ok, but visual inspection is reliable
 - sufficient N when trellis is full and basal leaves are dark green
- Challenge
 - leaches heavily because its negatively charged and will not resist movement in the soil
 - are often over applied or at wrong time

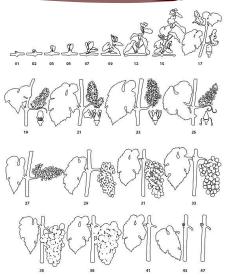
Nitrogen

- Deficiency symptoms
 - yellow chlorotic foliage
 - ø decreased shoot growth, short inter-nodal length, small foliage
 - symptoms often occur on the lower older leaves (mobile nutrient)

Overuse & Toxicity symptoms

- cane dieback from frost
- leaf scorch with marginal browning (esp. young vines)

Nitrogen - Timing


- High N consumption during bud break to fruit-set
 - Insufficient N leads to V/R competition
 - flower development and fruit-set can be diminished

1. After Spring Frost

- traditional
- applications halted in July

2. Post-Harvest

- immediately post-harvest before frost
- Illows N to be stored until Spring for fast development
- coincides with second flush of root growth
- 3. May also fertigate or apply foliar sprays for more immediate results

Nitrogen - Application

- Dry Application
 - leaching potential, important to split applications via band/ring under trellis
 - High vigor no N
 - Medium vigor 10-25 lbs. actual N/acre
 - Low vigor 30-40 lbs. actual N/acre
- Fertigation
- Foliar Spray
 - may require multiple applications, toxicity an issue

Nitrogen -Sources

- Which source to use? Price, availability, quantity, salt index
- Read the label and abide by instructions

Material	% N	Comments
Anhydrous Ammonia (NH ₃)	82	Very volatile lq/gas
Urea	46	Volatile dry material
Ammonium Nitrate (NH ₄ NO ₃)	34	Less volatile
Ammonium Sulfate (NH ₄) ₂ SO ₄	21	Volatile high pH soils
UAN 28-32	28-32	Volatile injected via drip

Phosphorous (P)

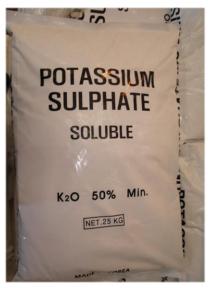
- Rarely an issue in Texas
- Deficiencies may be found in acidic soils
- Excess application can limit Zn and Fe

Potassium (K)

Demand is highest during fruit ripening

Deficiency symptoms

- starts with color loss at leaf edge (often early-mid summer)
- marginal chlorosis, **reddening**, curling , and necrotic foliage
- poor vine vigor, berry size, coloration, reduced soluble solids



K deficiency with over-cropping

Potassium (K) – Timing & Application

- Timing
 - Iate Fall to early Spring
- Dry
 - I furrow or banding over broadcast
- Fertigation
- Soliar Application
 - questionable efficacy

Micronutrients

Magnesium

Deficiency symptoms

- often found on high pH soil sites, heavy K fertilization, poor drainage
- Ieads to reduced photosynthetic activity
- marginal leaf "creamy" yellowing and/or reddening of basal leaves
- noticeable especially during a heavy crop load and fruit ripening

Magnesium – Application

Timing

- if 20% + of leaf area is chlorotic over large area
- Fall
- can use K-Mag (0-0-21) if need both K and Mg
- Dry
 - ${\ensuremath{\, \bullet }}$ furrow or banding
- Foliar Application
 - often done in spring up to two times
- Fertigation

Chelation

- Some micronutrients are easily oxidized or precipitate in soil/solution
 - Fe, Zn, Mn, Cu
- Utilization is inefficient
- Natural chemical ligands combined with micronutrient = chelate
- Prevents oxidation and precipitation
- Often applied dry

Ethylenediaminetetraacetic acid (EDTA) chelates a metal ion

Zinc

Deficiency symptoms

- can occur in tandem with Iron deficiency
- younger leaves often symptomatic first
- small asymmetrical foliage along apex of shoots
- Ieaf veins light in color
- poor fruit-set "hens and chickens"

Zinc - Application

Timing

- 2-3 weeks prior to bloom
- incorporate as a yearly maintenance spray program if persistent

• Foliar Application

- most effective method
- neutral Zn, or Zinc oxide
- chelated Zn more expensive, no known advantage

Iron

Deficiency symptoms

- mainly a problem on calcareous soils
- affects apical leaves early in season resulting in general chlorosis
- severe symptoms include ivory white or necrotic foliage, poor fruit-set

\odot Toxicity

- rare
- primarily pH related (drops creating abundance of available Fe)
- I dark green foliage, stunted growth of shoots & roots

Iron - Application

- Timing
 - 2 weeks before and after bloom for foliar spray
- Foliar Application
 - common but marginally effective
 - Iron sulfate and chelate
 - immobile so only benefits existing foliage
- Soil Application
 - must use chelated form of Iron
 - best option
 - Acidification of irrigation water may make iron more available ATEXAS AND

Boron

Deficiency symptoms

- classic symptom is low bud break followed by slow shoot growth and short internodes
- bushy stunted appearance
- younger leaves first affected
- In foliage has mottled yellowing
- Iusters may set small scraggly BB size unseeded berries

Boron – Application

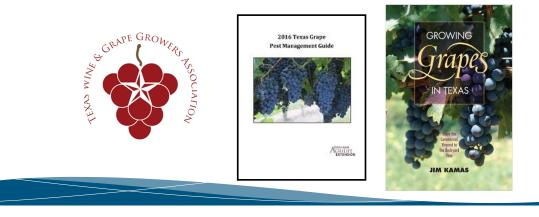
- Toxicity
 - In arrow threshold between deficiency and toxicity
 - In old leaves have speckled appearance on outer edge
 - young leaves are cupped downwards
 - > 1ppm in water, > 100 ppm petiole

Fertigation

- must be very cautious due to toxicity
- Foliar Application
 - effective method, applied 2-3 weeks pre-bloom or even post-harvest

TEXAS A&M GRILIFE EXTENSION

GRILIFE extension



Further Resources

- ⊙ Growing Grapes in Texas Jim Kamas
- Texas Grape Pest Management Guide

⊙ TWGGA

Any Questions? m.cook@tamu.edu

winegrapes.tamu.edu

