Managing Acidity in the Vineyard and the Winery

Dr. Andreea Botezatu
Asst. Professor and Enology Extension Specialist
June 2017
Factors affecting acidity

- Variety
- Temperature (esp. during ripening)
- Shade/exposure
- Crop level/balance
- Plant nutrition/soil fertility/soil moisture
Factors affecting acidity

![Graph showing fruit chemistry with lines for Soluble Solids/Titratable Acidity and pH vs. Weeks after bloom. The graph indicates changes in acidity over time.]
Fruit Composition

- **Organic Acids**
 - Tartaric, malic, citric, others
 - Ratio of tartaric to malic depends on variety and temperature during ripening (0.6 to 3.4)

- Breakdown of malic acid during ripening accounts for decreasing titratable acidity
 - High temps = low TA, esp. malic acid levels

- Tartaric acid is converted to K+ salt forms which causes pH to increase
Interaction of Variety Ripening Season and Temperature

Fruit quality is best when ripened under warm days and cool nights

- Early ripening grapes in a long season, hot area: Excess heat (especially night temps >60°F)
 - High sugar, low acid, high pH, poor color, poor flavor & aroma
- Late ripening grapes in a short season, cool area: Insufficient heat (especially daytime temps <70°F)
 - Low sugar, high acid, low pH, unripe herbaceous flavors

- Some varieties have a tendency for high pH and high TA
 - Black Spanish
 - Tempranillo
Relative Time of Ripening

- Early ripening varietals
 - Blanc du Bois, Viognier, Tempranillo

- Late ripening varietals
 - Cabernet Sauvignon, Mourvedre, Black Spanish
Appropriate Harvest Decisions

- Sugar, acid and pH?
- Flavor, aroma?
- Skin and seed maturity?

- Problem with TX varieties
 - As we wait for complete phenolic maturity sugar increases, TA drops, pH increases
 - What guidelines will be used to harvest these? pH?
Effect of Sun & Shade on Acidity

- **TA**
 - Excessive exposure of clusters leads to low TA
 - Shaded canopy leads to low TA
 - Shaded clusters lead to high TA

- **pH**
 - Shaded canopy (3+ leaf layers) leads to high pH
 - Well exposed canopy (1-2 layers) leads to low pH
Effect of Crop Load on Acidity

- **TA**
 - High crop load leads to high TA
 - Low crop load leads to low TA

- **pH**
 - High crop loads leads to low pH
 - Low crop loads leads to high pH
Soil and Plant Nutrition

- Soils deficient in K⁺ lead to plant health problems (poor growth, reduced cold hardiness, increased disease susceptibility, etc)
- K⁺ levels in soils are indirectly related to K⁺ levels in plants
- Excess K⁺ in soils will not lead to excess K⁺ levels in plants
 - Active uptake, enzyme site saturation
- Large rootstock effect
 - *V. champinii* increase K⁺ up to 2x
- Soil pH can be important
 - K is less available at low soil pH
 - High K and high pH can lead to excess K and Mg deficiency.
- Soil moisture is important… K⁺ must be in solution for uptake
Irrigation

- Higher TA at the end of ripening (Tempranillo)
 - results are not clear cut, so no consensus on the issue
Managing Acidity in the Winery

1) Low TA and high pH (TA < 6g/L) (pH > 3.5)

2) Moderate TA and pH (TA 6-9g/L) (pH 3.0-3.5)

3) High TA and low pH (TA>9g/L) (pH<3.5)

4) High TA and high pH (TA>9g/L) (pH>3.5)
Managing Acidity in the Winery

- Low acidity wines
 - Acid additions
 - Tartaric acid (most common)
 - Citric acid
 - Other acids (malic, fumaric, etc)
 - Blending
 - Blending trials recommended
 - Stable wines pre-blend can produce an unstable wine post-blend
Managing Acidity in the Winery

- Low acidity wines
 - Acidic reserve additions
 - Underripe pre-harvested grapes
 - Either juice
 - Or wine
 - No MLF
 - Consider acid balance – Index of Acidity
 - TA - pH
Managing Acidity in the Winery

- **High acidity**
 - **MLF fermentation** (lactic acid bacteria Pediococcus, Lactobacillus, and Leuconostoc)
 - TA can decrease by 1-3 g/L
 - The higher the initial pH, the higher the reduction
 - pH will increase by 0.1-0.2

- **Amelioration** (adding…water and sometimes sugar to must)
 - TA drops
 - pH remains stable (must buffering capacity)
 - Legality?
Managing Acidity in the Winery

- High Acidity (continued)
 - Calcium Carbonate additions
 - Single salt precipitation
 \[
 \text{CaCO}_3 + \text{H}_2\text{T} \rightarrow \text{CaT} + \text{H}_2\text{O} + \text{CO}_2
 \]
 \[
 0.66 \text{ g CaCO}_3 \rightarrow \downarrow \text{H}_2\text{T} \text{ by 1 g}
 \]
 - Double salt precipitation
 - To precipitate both calcium tartrate and calcium malate (2 salts)
 - Part of the wine is treated and then blended back
 - TA \ \downarrow \ \text{pH} \ \downarrow
Managing Acidity in the Winery

- High Acidity (continued)
 - **Blending**
 - Blending trials recommended
 - Stable wines pre-blend can produce an unstable wine post-blend
 - **Sugar addition**
 - No chemical de-acidification but
 - Sensory profile is improved, acidity is balanced by perceived sweetness
Managing Acidity in the Winery

- Choice of yeast strain
 - Lalvin C
 - Exotics

- Plastering – focuses on pH without affecting TA
 - For high pH & low/medium TA wine
 - pH can drop by 0.1-0.3
 - May cause Ca instability
 - May affect sensory profile