HORT325: Vegetable Crop Production

Insect Management

Loss from Insects (and diseases & weeds)

• Reduced Yields
• Reduced Quality
• Increased Production & Harvesting Costs
• Increased Expense Through Control Measures

Goal of Insect Management

• Maximum control at minimal "cost"
 – "Cost" should include possible harm to environment
• Maximizing control requires recognizing onset of problem
 – Early infestations require less drastic control measures
 – Need to understand the biology of the insect
Insect Life Cycles

- Complete
 - Four distinct stages:
 - Examples of these insects are beetles and moths
- Incomplete
 - Hatch from eggs into tiny nymphs that resemble the adult stage
 - Many insects in this category have piercing, sucking mouthparts and suck juice from plants (also grasshoppers)
 - Adults have fully developed wings; nymphs cannot fly

Insect Injury to Plants

- Injury by Chewing Insects
 - Visible chewing on plant parts; include moths & beetles
- Injury by Piercing-Sucking Insects
 - Wounds generally invisible, but other symptoms visible
- Injury by Internal Feeders
 - Entry wound generally invisible; exit wounds may be large
 - What growth stage would you target control of these insects?
- Injury by Subterranean Insects
 - Some or all of their life-cycle may be below ground
 - chewers, sap suckers, root borers and gall insects

Insects as Disseminators of Plant Diseases

- Discovered in 1892 that honeybees spread fire blight bacteria between fruit trees
- Now known that more than 200 diseases are spread by insects (mostly viruses)
- How?
 - Creating an entrance wound
 - Transporting the disease organism on or in their body, and delivering the organism on or in the plant
 - Serve as an essential host for a portion of the life cycle of the disease causing organism
Beneficial Insects

• “There is no doubt that the greatest single factor in keeping plant-feeding insects from overwhelming the rest of the world is that they are fed upon by other insects”
• Considered in two groups:
 – Predators
 • Larger & Stronger than prey
 – Parasites
 • Smaller & Weaker than host, host survives at least for a time
• Any control measure should consider impact on beneficial insects

Control Measures

• Soil Insects
 – wireworms, white grubs, fire ants, cutworms, seed maggots and the sweet potato weevil
 – Often soil insects, especially cutworms, are common in uncultivated soil sites that have had grass and weeds growing the previous season
 – Controlling soil insects is much easier if done prior to planting

Control Measures

• Chewing Insects
 – Many chewing insects have a complete life cycle (except grasshoppers); therefore, depending on species, there may be one or two damaging stages
 – Control of chewing insects is basically twofold:
 • Monitor for eggs and small larvae that begin to feed
 • Monitor for the adults and control them when necessary
 – Control of these insects is important in the early infestation of the plant
Control Measures

• Sucking Insects
 – aphids, stink bugs, squash bugs, leafhoppers and spider mites
 – Usually attracted to the most succulent part of the plant
 – Major disease vectors
 – Control is easiest to obtain soon after the insects hatch from eggs

Pest Control with a Minimum Use of Chemicals

• Overuse of pesticides has a number of adverse effects:
 – Food products may contain unsafe pesticide residues if improperly treated with pesticide
 – Beneficial insects, earthworms and birds may be harmed or killed along with harmful insects if pesticides are carelessly used
 – Each time producers spray, they expose themselves to the possibility of inhalation or absorption of the toxin
 – Careless use of pesticides near water may contaminate water supplies
 – Misuse of pesticides can lead to the development of chemical resistance in the target pest
 – The use of pesticides can lead to outbreaks of secondary pest species

Non-Chemical Insect Control

• Resistant Plant Cultivars
• Cultural Practices
• Mechanical Control Methods
• Biological Control Methods
 – *Nosema locustae* (Protozoan)
 – *Trichogramma* wasp
 – Green lacewings
 – Praying Mantis
 – Lady beetles
 Biological control methods require a certain pest population to maintain the population of biologicals
Chemical Insect Control

- **Natural Insecticides**
 - Pyrethrum (flower extract), Nicotine (tobacco extract), Sabadilla (seed extract), Rotenone (root extract), *Bacillus thuringiensis* (bacterial extract), Safer's Insecticidal Soap®
- **Synthetic Insecticides**

Rules for Insecticide Application

- Only use registered products and follow label
 - Regardless of whether it is “natural” or “synthetic”
- Apply insecticides based on close field monitoring
 - Apply early during infestation
- Rotate insecticides to avoid build-up of resistant insects
- Select insecticides and application timing to minimize damage to non-target organisms
- Should be part of an Integrated Pest Management (IPM) program that includes all available methods for control