Plants for Sustainable Landscapes
HORT 308 Spring 2019

Plant Development & Genetic Variation
Reading Assignments

Pages 35 and 58 - 62 in
Landscape Plants For Texas And Environ, Third Edition
Life Cycle of Woody Plants

- **Seedling**
 - Exponential growth rate, emphasis on root establishment and competition for sunlight

- **Youth**
 - Rapid growth, little flowering, immature morphology, few years to decades; strongly resilient to environmental stresses

- **Maturity**
 - Emphasis on seed production, more spreading habit, slower growth rate, few to thousands of years; recover from damage more slowly

- **Senescence**
 - Dieback, declining vigor, few to many years

- **Death**
 - Ceasing of life functions, collapse and decay
Is Genetic Manipulation in the Landscape Important?
Genetic Variation

- **Genotype × environment interaction**
 - Genotype sets potential for traits, environment modifies expression
 - Removing genotype from ecological community

- **Basic sources of genetic variation**
 - Mutations (alteration in the code), genetic segregation (swapping genes), & recombination (rearranging)
 - With environmental selection get evolution
 - Intervention by people results in cultivars

- **Intrinsic variation** = within the species
- **Extrinsic variation** = outside the species
Types of Intrinsic Variation

- Ecophenic or Non-genetic
 - Phenotypic plasticity
 - Response to environment not under genetic control
 - Sun versus shade leaves
 - Smaller fruit on dry sites
 - Not heritable
 - Reciprocal transplant studies
 - Is trait stable in different environments?
 - Ecotype versus Ecophene
Genetic Variation

- Heteroblastic Change
 - Juvenile to mature phase change
 - Seasonal heteromorphism
- Mutations
 - Alterations in genetic code
- Chromosomal Variations
 - Haploid, aneuploidy, polyploidy
- Non-adaptive Variation
 - Not associated with environmental factor
Genetic Variation

• Ecotypic (adaptive) variation
 – Ecological Race
 • In response to environment, often discontinuous (Lost Pines)
 – Cline
 • Like ecotypic, but environmental gradient response (Red Maple)
 – Speciation
 • Result of ecotypic variation and/or isolation over time (Escarpment Live Oak)

Quercus virginiana var. fusiformis or Quercus fusiformis?
Genetic Variation

• Reproductive variation
 – Outcrossing = xenogamy
 • Monoecious versus dioecious
 – Inbreeding = autogamy
 – Apomixis
 • Vegetative apomixis = vegetative reproduction
 ← Example: *Populus nigra* ‘Italica’
 • Agamospermy = asexual seed formation
Genetic Variation

- Extrinsic Variation
 - Intergeneric and intrageneric hybrids
 - F_1 generation intermediate
 - F_2 segregates on wide continuum
 - Introgression
 - Repeated back-crossing to parental species
 - Hybrid swarms - gradient of characters
 - Transfers genes among species
- Gene transfer (genetic engineering)
Questions / Comments?

All material represented herein are copyrighted by the author, or otherwise as indicated, with all rights reserved.

For permission to reproduce text or images from this presentation write:
Dr. Michael A. Arnold
Dept. of Horticultural Sciences
Texas A&M University
College Station, TX 77843-2133
email ma-arnold@tamu.edu