Life Cycle of Woody Plants

- **Seedling**
 - Exponential growth rate, emphasis on root establishment and competition for sunlight
- **Youth**
 - Rapid growth, little flowering, immature morphology, few years to decades; strongly resilient to environmental stresses
- **Maturity**
 - Emphasis on seed production, more spreading habit, slower growth rate, few to thousands of years; recover from damage more slowly
- **Senescence**
 - Dieback, declining vigor, few to many years
- **Death**
 - Ceasing of life functions, collapse and decay

Is Genetic Manipulation in the Landscape Important?
Genetic Variation

- **Genotype × environment interaction**
 - Genotype sets potential for traits, environment modifies expression
 - Removing genotype from ecological community
- **Basic sources of genetic variation**
 - Mutations (alteration in the code), genetic segregation (swapping genes), & recombination (rearranging)
 - With environmental selection get evolution
 - Intervention by people results in cultivars
- **Intrinsic variation = within the species**
- **Extrinsic variation = outside the species**

Types of Intrinsic Variation

- **Ecphenic or Non-genetic**
 - Phenotypic plasticity
 - Response to environment not under genetic control
 - Sun versus shade leaves
 - Smaller fruit on dry sites
 - Not heritable
- Reciprocal transplant studies
 - Is trait stable in different environments?
 - Ecotype versus Ecophene

Genetic Variation

- **Heteroblastic Change**
 - Juvenile to mature phase change
 - Seasonal heteromorphism
- **Mutations**
 - Alterations in genetic code
- **Chromosomal Variations**
 - Haploid, aneuploidy, polyploidy
- **Non-adaptive Variation**
 - Not associated with environmental factor

Genetic Variation

- **Ecotypic (adaptive) variation**
 - Ecological Race
 - In response to environment, often discontinuous (Lost Pines)
 - Cline
 - Like ecotypic, but environmental gradient response (Red Maple)
 - Speciation
 - Result of ecotypic variation and/or isolation over time (Escarpment Live Oak)

- Pinus taeda
- Acer rubrum
- Quercus virginiana var. fusiformis or Quercus fusiformis?
Genetic Variation

• Reproductive variation
 – Outcrossing = xenogamy
 • Monoecious versus dioecious
 – Inbreeding = autogamy
 – Apomixis
 • Vegetative apomixis = vegetative reproduction
 – Example: *Populus nigra* ‘Italica’
 • Agamospermy = asexual seed formation

Genetic Variation

• Extrinsic Variation
 – Intergeneric and intrageneric hybrids
 • F₁ generation intermediate
 • F₂ segregates on wide continuum
 – Introgression
 • Repeated back-crossing to parental species
 • Hybrid swarms - gradient of characters
 • Transfers genes among species
 – Gene transfer (genetic engineering)

Questions / Comments?

All material represented herein are copyrighted by the author, or otherwise as indicated, with all rights reserved.

For permission to reproduce text or images from this presentation write:
Dr. Michael A. Arnold
Dept. of Horticultural Sciences
Texas A&M University
College Station, TX 77843-2133
email ma-arnold@tamu.edu