Plant Hardiness in the Built Environment

Dr. Michael A. Arnold
Dept. of Horticultural Sciences
Texas A&M University
An ASHS HortIM peer-reviewed instructional material

What Is Plant Hardiness?

Plant Hardiness = ability of a given genotype to survive, grow, and fulfill its intended use in the landscape in a given geographic location

- Involves many interactions among genotype, environment, cultural practices, and intended use
- Critical concept for sustainable designs

Changes In USDA Plant Hardiness Zone Map

Derived from 1990 version
http://www.usna.usda.gov/Hardzone/ushzmap.html

Derived from 2012 version
http://planthardiness.ars.usda.gov/PHZMWeb/imag es/300DPI/SIMP_US_lower48_fullzones_300dpi.jpg

True changes in climate versus changes in sample period?
Urban impacts at some measurement sites?
Natural cyclical variation versus human caused variation?

Cold Temperatures

- A key factor for perennial plants, little meaning for summer annuals
- USDA Hardiness Zone Map
 - Based on *average annual minimum low temperature*
 - Says nothing about:
 - 100 or 1000 year low temperature
 - Duration or frequency of low temperatures
 - Fluctuations from low to growing temperatures
 - Fall acclimation / spring deacclimation conditions
 - Variation between measurement & planting sites

Lagerstroemia indica versus Lagerstroemia fauriei
Cold Temperatures

Latitude versus altitude
- Temperature varies inversely with altitude & latitude
- Implications with global climate change

Maritime and Lake Effects
- Moderate seasonal fluctuations
- Depends on size, prevailing winds, and currents

Continental Effects
- Accentuate seasonal fluctuations

Topographical Variations
- Diversion of prevailing winds
- Trapping of air masses in depressions

Drought

Year-Round Deficits
- Desert & semi-arid regions

Seasonal Deficits
- Summer, winter, cold / drought interactions

Soil moisture versus atmospheric humidity
- Significant water demand even at high relative humidity
- Interactions among wind, relative humidity, and soil moisture

Drought & Topographic Features

Local wind patterns and topographic features influence moisture as well as temperature
(Wet versus dry sides of Island of Maui, HA)
Excess Moisture

Flooding
- Anoxia / hypoxia is problem, not excess H₂O
- Poor surface drainage = temporary flooding
- Monsoon rains
- Permanently wet soils
 - Swamps, bogs, etc.
 - Seasonal wetlands
 - Poor internal soil drainage is a major urban limitation

Heat

Daily maximum temperatures
High night temperatures
- Major limitation in southern USA
- Respiration is more temperature dependent than photosynthesis
 - Some genotypes essentially starve with long term high night temperatures

Reflected heat in built envirn.
High root zone temperatures
- Special concern in above ground planters

Elevated Soil Temperatures

- Major challenges in some settings
- Often combined with reflected heat and high night temperature conditions

Masonry Surfaces May Exacerbate High Soil Temperatures
Misc. Soil & Atmospheric Factors

Seashore conditions
- Soil salts &/or salt spray
- Smog / air pollutants
- Saline or alkaline soils

Coastal challenges are substantial

Smog in Dallas, TX

Shallow alkaline soil

Quality of irrigation water
- Method of application

Soil fertility
- Interactions with various physiological processes

Soil compaction

Compaction during construction

Fertility affects leaf mass

Urban / Suburban Soil Challenges

- High pH is a frequent challenge
 - Massive quantities of structures with calcium carbonate
 - Soil fertility & pH intimately intertwined

Mn chlorosis on *Acer rubrum*
Low Soil Oxygen

Compaction & poor drainage = lethal combination

Compaction mediated dieback on Catalpa speciosa

Construction damage!

Drainage lines must exit at lower elevation

Bathtub effect!

Other Urban Soil Challenges

- Lack of soil structure
- Limited volume of root zone
- High bulk density soils
- Poor fertility subsoil
- Imbedded foreign objects
- Low mycorrhizal inoculum

An alternative solution to urban soil problems is to use containers of various sizes

Informal setting

Informal setting, incorporate edibles

Formal setting

Any season
Urban Heat Islands - Large Scale Implications

- Fort Worth
- Dallas

Image courtesy of Dr. Derald A. Harp

Image courtesy of USDA

http://planthardiness.ars.usda.gov/PHZMWeb/InteractiveMap.aspx

Micro Climates

- Small scale lake, river, stream effects
- Shelter by buildings and other plants
- Exposure to prevailing wind
- Reflected heat
- Restricted root zones
- Road-side salts and pollution
- Air drainage patterns
- Buried utility lines
- Heated discharge water
- High traffic areas

(Daughter's/son's window?)

Microsite Implications Of Urban Heat Islands

- Light (irradiance) levels
- Air movement patterns
- Low humidity levels

Hardiness Can Be An Issue Even In Interiorscapes
Disease, Pest, and Environmental Interactions

• Unfavorable environments predisposes plants to diseases and pest infestations
• Diseases and pest infestations increase susceptibility to environmental stresses

Questions / Comments?

All material represented herein are copyrighted by the author, or otherwise as indicated, with all rights reserved.

For permission to reproduce text or images from this presentation write:
Dr. Michael A. Arnold
Dept. of Horticultural Sciences
Texas A&M University
College Station, TX 77843-2133
e-mail ma-arnold@tamu.edu