HARTMANN AND KESTER’S PLANT PROPAGATION
PRINCIPLES AND PRACTICES
EIGHTH EDITION

Hudson T. Hartmann, PhD
University of California, Davis

Dale E. Kester, PhD
University of California, Davis

Fred T. Davies, Jr., PhD
Texas A&M University College Station

Robert L. Geneve, PhD
University of Kentucky, Lexington

Prentice Hall
Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo
Dedications

7 July 2009

The eighth edition of *Plant Propagation* is dedicated to Dr. Dale Emmert Kester, Professor Emeritus for the University of California, Davis. Dale passed away on November 21, 2003.

His lifelong interest in horticulture led Dale to enroll as a horticulture student at Iowa State University in Ames, Iowa in 1941. His college career was interrupted in 1943 when Dale joined the war effort as a US Air Force P-51 Mustang pilot. As a World War II pilot, he escorted bombers on 28 missions over Italy and Central Europe. Dale met his future wife, Daphne Dougherty, while he was stationed in Baton Rouge, Louisiana. Daphne was a USO dancer at the time. Following the war, he returned to Iowa State University and completed his horticulture degree in 1947.

Dale was the first PhD graduate from the University of California, Davis Pomology Department following the war. His dissertation concerned embryo culture of peaches. In 1951, he was offered an Assistant Professor position in the Department of Pomology at UC Davis where his work was to focus on almond production and breeding. This was the position he would hold until his retirement 40 years later in 1991. He taught undergraduate plant propagation and pomology courses. Early in his career, he partnered with Dr. Hudson Hartmann to publish the first edition of “Plant Propagation—Principles and Practices” in 1959.

Along with Hudson Hartmann and others, Dale was a founding member of the Western Region of the International Plant Propagators’ Society. He served that organization as Vice-President, program chair in 1996 and President in 1997. Dale received the Curtis J. Alley Award in 1999 for his lifetime service to the International Plant Propagators’ Society. In 2002, shortly before his death, he received the society’s highest award, the International Award of Honor. With this award, he was recognized for “his long-standing reputation as a dedicated teacher of students interested in plant propagation, his service to the International Plant Propagators’ Society and especially, for his seminal textbook on plant propagation used world over.”

Dale was a longtime member of the American Society for Horticultural Science and was recognized as a Fellow in 1977. He served as the first chair of the Propagation Working Group and received the Stark Award in 1980. In 1998, he was the Spenser Ambrose Beach Lecturer at Iowa State University. He published over 120 research papers in journals and conference proceedings. His research efforts in almond led to numerous root stock introductions, as well as the cause for noninfectious bud failure in almond.

Dale Kester was one of the most internationally recognized horticulturists of his generation, but remained a very unpretentious man. He was easy-going, good humored and appeared more impressed with his colleagues’ achievements than his own. Dale was a mentor, role model, and a friend. He will be greatly missed by the horticultural community.

The seventh edition of *Plant Propagation* was dedicated to Dr. Hudson T. Hartmann. Dr. Hartmann died March 2, 1994 just as plans for the sixth edition were getting underway. He is remembered as a dedicated, hard-working, conscientious scientist, teacher, and human being. He conceived of the writing of this text about 1955 and asked the second author, Dr. Dale E. Kester, to join him. Dr. Hartmann taught Plant Propagation at the University of California at Davis from 1945 to his retirement in 1980. His research in propagation involved early studies on hormones, mist propagation, and other aspects of cutting propagation.
particularly as they applied to fruit trees. He was also a specialist in olive research and development, attaining a worldwide reputation for this crop.

One of his primary accomplishments was his activity with the International Plant Propagation Society. He became a member in 1953 and then was instrumental in initiating the Western Region of the Society in 1960. He served as Western Region Editor for the Society from 1960 to 1993, serving also as International Editor from 1970 until 1991. During his career he published many scientific papers and popular articles. As well as the present text, he was senior author of *Plant Science: Growth, Development and Utilization of Cultivated Plants*, first edition (1981), second edition (1988) published by Prentice Hall.

Dr. Hartmann was a member of the American Society for Horticultural Science, becoming a Fellow in 1974. As an undergraduate he was a member of Gamma Sigma Delta and Alpha Zeta. He received many awards, including the Charles G. Woodbury Award (1960), Joseph H. Gourley Award (1962), and Stark Brothers Award (1964) from ASHS. The American Association of Nurserymen awarded him its Norman J. Coleman Award (1970), The California Association of Nurserymen presented him with its Research award (1977), and Pi Alpha Xi made him an honorary member (1981). The Western Region IPPS awarded Dr. Hartmann its Merit award (1979), Honorary Membership (1983), and established the Hudson T. Hartmann Western Region Research Grant in his honor. The International IPPS Board of Directors awarded him the International Award of Honor in 1990.

Dr. Hartmann was a close personal friend, a collaborator who made working together a pleasure, and a respected peer whose guidance and insight are missed.
brief contents

Preface xii
About the Authors xiv
Acknowledgements xv

part one
General Aspects of Propagation

1 How Plant Propagation Evolved in Human Society 2
2 Biology of Plant Propagation 14
3 The Propagation Environment 49

part two
Seed Propagation

4 Seed Development 110
5 Principles and Practices of Seed Selection 140
6 Techniques of Seed Production and Handling 162
7 Principles of Propagation from Seeds 200
8 Techniques of Propagation by Seed 250

part three
Vegetative Propagation

9 Principles of Propagation by Cuttings 280
10 Techniques of Propagation by Cuttings 344
11 Principles of Grafting and Budding 415
12 Techniques of Grafting 464
13 Techniques of Budding 512
14 Layering and Its Natural Modifications 537
15 Propagation by Specialized Stems and Roots 561
16 Principles and Practices of Clonal Selection 594

part four
Cell and Tissue Culture Propagation

17 Principles of Tissue Culture and Micropropagation 644
18 Techniques for Micropropagation 699

part five
Propagation of Selected Plant Species

19 Propagation Methods and Rootstocks for Fruit and Nut Species 728
20 Propagation of Ornamental Trees, Shrubs, and Woody Vines 774
21 Propagation of Selected Annuals and Herbaceous Perennials Used as Ornamentals 840

Appendix 000
Glossary 000
Index 000
contents

Preface xii
About the Authors xiv
Acknowledgements xv

part one
General Aspects of Propagation 1

1
How Plant Propagation Evolved in Human Society 2
Introduction 2
Learning Objectives 2
Stages of Agricultural Development 3
Organization of Human Societies 4
Exploration, Science, and Learning 5
The Development of Nurseries 8
The Modern Plant Propagation Industry 12
Discussion Items 12
References 12

Biology of Plant Propagation 14
Introduction 14
Learning Objectives 14
Biological Life Cycles in Plants 14
Taxonomy 18
Legal Protection of Cultivars 21
Genetic Basis for Plant Propagation 21
Genetic Inheritance 27
Gene Structure and Activity 30
Plant Hormones and Plant Development 38
Discussion Items 45
References 45

The Propagation Environment 49
Introduction 49
Learning Objectives 49

Environmental Factors Affecting Propagation 50
Physical Structures for Managing the Propagation Environment 54
Containers for Propagating and Growing Young Liner Plants 70
Management of Media and Nutrition in Propagation and Liner Production 77
Management of Microclimatic Conditions in Propagation and Liner Production 85
Biotic Factors—Pathogen and Pest Management in Plant Propagation 90
Post-Propagation Care of Liners 100
Discussion Items 102
References 103

part two
Seed Propagation 109

Seed Development 110
Introduction 110
Learning Objectives 110
Reproductive Life Cycles of Vascular Plants 110
Characteristics of a Seed 112
Reproductive Parts of the Flower 117
Relationship Between Flower and Seed Parts 118
Stages of Seed Development 122
Unusual Types of Seed Development 130
Plant Hormones and Seed Development 133
Ripening and Dissemination 136
Discussion Items 137
References 137
Principles and Practices of Seed Selection 140
Introduction 140
Learning Objectives 140
Breeding Systems 140
Categories of Seed-Propagated Cultivars and Species 147
Control of Genetic Variability During Seed Production 150
Seed Production Systems 153
Discussion Items 159
References 159

Techniques of Seed Production and Handling 162
Introduction 162
Learning Objectives 162
Sources For Seeds 162
Harvesting and Processing Seeds 166
Seed Testing 175
Seed Treatments to Improve Germination 184
Seed Storage 189
Discussion Items 195
References 195

Principles of Propagation from Seeds 200
Introduction 200
Learning Objectives 200
The Germination Process 200
Dormancy: Regulation of Germination 218
Kinds of Primary Seed Dormancy 220
Secondary Dormancy 235
Dormancy Control by Plant Hormones 236
Discussion Items 240
References 240

Techniques of Propagation by Seed 250
Introduction 250
Learning Objectives 250
Seedling Production Systems 250
Discussion Items 276
References 276

part three
Vegetative Propagation 279

Principles of Propagation by Cuttings 280
Introduction 280
Learning Objectives 280
Descriptive Observations of Adventitious Root and Bud (and Shoot) Formation 281
Correlative Effects: How Hormonal Control Affects Adventitious Root and Bud (and Shoot) Formation 293
The Biochemical Basis for Adventitious Root Formation 299
Molecular/Biotechnological Advances in Asexual Propagation 304
Management and Manipulation of Adventitious Root and Shoot Formation 305
Management of Stock Plants to Maximize Cutting Propagation 307
Treatment of Cuttings 318
Environmental Manipulation of Cuttings 323
Discussion Items 331
References 332

Techniques of Propagation by Cuttings 344
Introduction 344
Learning Objectives 344
Types of Cuttings 344
Sources of Cutting Material 363
Rooting Media 367
Wounding 373
Treating Cuttings with Auxins 373
Preventative Disease Control 381
Environmental Conditions for Rooting Leafy Cuttings 383
11 Principles of Grafting and Budding 415
 Introduction 415
 Learning Objectives 415
 The History of Grafting 415
 Terminology 417
 Seedling and Clonal Rootstock Systems 419
 Reasons for Grafting and Budding 419
 Natural Grafting 424
 Formation of the Graft Union 425
 Graft Union Formation in T- and Chip Budding 432
 Factors Influencing Graft Union Success 433
 Genetic Limits of Grafting 439
 Graft Incompatibility 441
 Scion-Rootstock (Shoot-Root) Relationships 450
 Discussion Items 457
 References 457

12 Techniques of Grafting 464
 Introduction 464
 Learning Objectives 464
 Requirements for Successful Grafting 464
 Types of Grafts 465
 Production Processes of Graftage 491
 Aftercare of Grafted Plants 502
 Field, Bench, and Miscellaneous Grafting Systems 504
 Discussion Items 509
 References 509

13 Techniques of Budding 512
 Introduction 512
 Learning Objectives 512
 Importance and Utilization of Budding 512
 Rootstocks for Budding 513
 Time of Budding—Summer, Spring, or June 513
 Types of Budding 519
 Top-Budding (Topworking) 532
 Double-Working by Budding 533
 Microbudding 534
 Discussion Items 535
 References 536

14 Layering and Its Natural Modifications 537
 Introduction 537
 Learning Objectives 537
 Reasons for Layering Success 537
 Management of Plants During Layering 539
 Procedures in Layering 539
 Plant Modifications Resulting in Natural Layering 551
 Discussion Items 558
 References 558

15 Propagation by Specialized Stems and Roots 561
 Introduction 561
 Learning Objectives 561
 Bulbs 563
 Corms 577
 Tubers 579
 Tuberous Roots and Stems 581
 Rhizomes 584
 Pseudobulbs 587
 Discussion Items 590
 References 590
16 Principles and Practices of Clonal Selection 594
Introduction 594
Learning Objectives 594
History 594
Using Clones as Cultivars 595
Origin of Clones as Cultivars 597
Phenotypic Variations Within Clones 601
Patterns of Genetic Chimeras Within Clones 603
Management of Phase Variation During Vegetative Propagation 613
Pathogens and Plant Propagation 619
Selection and Management of Propagation Sources 623
Propagation Sources and Their Management 630
Discussion Items 635
References 636

part four Cell and Tissue Culture Propagation 643

17 Principles of Tissue Culture and Micropropagation 644
Introduction 644
Learning Objectives 644
A Brief History of Tissue Culture and Micropropagation 644
Types of Tissue Culture Systems 649
Control of the Tissue Culture Environment (119, 209, 229) 679
Special Problems Encountered by In Vitro Culture 681
Variation in Micropropagated Plants 684
Discussion Items 687
References 687

18 Techniques for Micropropagation 699
Introduction 699
Learning Objectives 699

Uses for Micropropagation 699
Disadvantages of Micropropagation 701
General Laboratory Facilities and Procedures 702
Micropropagation Procedures 712
Stage I—Establishment 713
Stage II—Shoot Multiplication 716
Stage III—Root Formation 717
Stage IV—Acclimatization to Greenhouse Conditions 718
Discussion Items 724
References 724

19 Propagation of Selected Plant Species 727

part five Propagation 728

19 Propagation Methods and Rootstocks for Fruit and Nut Species 728
Introduction 728
References 766

20 Propagation of Ornamental Trees, Shrubs, and Woody Vines 774
Introduction 774
References 825

21 Propagation of Selected Annuals and Herbaceous Perennials Used as Ornamentals 840
Introduction 840
References 869

Subject Index 000
Plant Index, Scientific Names 000
Plant Index, Common Names 000
Preface

The eighth edition of *Plant Propagation: Principles and Practices* continues the legacy of updating the ever-changing principles and practices associated with plant propagation, but it is also the first edition with expanded color figures throughout the text. This is an exciting prospect that the co-authors hope will enhance student learning. Some 90% or more of the images and illustrations are either new or enhanced.

The eighth edition is published a half-century after the initial printing of *Plant Propagation: Principles and Practices* in 1959, but still continues the tradition of presenting paired chapters where the principles underlying the science of propagation alternate with the technical practices and skills utilized for commercial plant propagation. As with previous editions, the amount of material between editions has increased at an incredible rate and many aspects of growth and development have expanded beyond the wildest forecasts in 1959. We have tried to integrate the most current commercial techniques and understanding of the biology of propagation into current chapters. We have substantially updated the references and sections on “Getting More in Depth on the Subject” to help the reader delve deeper into these subjects than the general scope of this textbook.

As in previous editions, the book is organized into four basic parts. The initial three chapters are general chapters meant to support general aspects of propagation including a historical perspective, basic plant biology concepts and the impact and control of the environment as it affects propagation and nursery practices. Chapter 2 has been significantly revised to reflect the significant progress in plant hormone biology and the molecular advances in plant growth and development. We hope that it serves as background support for understanding the concepts described in the Principles chapters, and provides a foundation for students to pursue these fascinating subjects in the literature. Chapter 3 continues the integration of concepts and application to control the propagation environment, which is of major importance in commercial propagation. The latest engineering, computerization, and mechanization systems for propagation are included. The next two sections describe seed and vegetative propagation, respectively. Each revised section provides a chapter on the concepts behind genetic selection for either sexual or clonal plants, and then specific chapters for the principles and practices. The final section is an updated compilation of propagation techniques for specific crops.

New with this edition is the inclusion of study questions at the end of each chapter to compliment the keywords provided in the page margins, and web-based student resources available through www.pearsonhighered.com/hartmann (PH update this - UPDATED). There is also an instructors’ resource website at www.pearsonhighered.com/hartmann (PH update this - UPDATED). Propagation instructors are encouraged to contact their local Prentice-Hall representative for a complimentary copy of the textbook.

A substantial increase in the number of figures was used to support the text for the eighth edition. The majority of these images have been taken by the co-authors while visiting commercial producers and research labs throughout the world. This opportunity was only possible because of the generosity of companies and individuals associated with those organizations. These groups are too numerous to acknowledge here, but the authors would like to express our sincere appreciation for the access granted to us that has made it possible to illustrate commercial plant propagation techniques to students. Additional images were taken while using the library resources...
of the Lloyd Library in Cincinnati, and the rare book collections at the Missouri Botanical Garden and the University of Kentucky. We would also like to express our appreciation to those colleagues who have generously supplied images to enhance this and previous editions.

Mention or photographs of any products or techniques are for information purposes only, and are not intended as endorsements; neither is criticism implied for products not mentioned. Always follow instructions on product labels, and be aware that regulations may vary by country, state, and region. In any commercial propagation system it is important to conduct small trials before propagating on a large scale. Any propagation techniques and references listed are to serve as a guide. Propagators must develop their own procedures and chemical treatments that work best for their particular propagation system.

In preparing the eighth edition of this book, we have depended upon the assistance of authorities in the various fields of propagation and related subjects. We thank them for their critical evaluation and suggestions. We also thank our wives, Maritza Davies and Pat Geneve, and families for their support, encouragement, and patience during the writing and production of this edition. We thank Mike Geneve for preparing selected illustrations used in the text.

Finally we acknowledge the skill and professionalism of the Prentice-Hall and associated editors who made this production possible including: Stephanie Kelly, William Lawrensen, Alicia Ritchey, Laura Weaver, Lara Dimmick, and Alex Wolf.
About the Authors

Fred T. Davies, Jr., Professor of Horticultural Sciences, and Molecular & Environmental Plant Sciences, and TAES Research Faculty Fellow, Texas A&M University, has taught courses in plant propagation and nursery production and management since 1979. He has co-authored over 150 research and technical publications. He was a J. S. Guggenheim Fellow (1999), and a Fulbright Senior Fellow to Mexico (1993) and Peru (1999). He is a Fellow of the American Society for Horticultural Sciences (ASHS) (2003) and the International Plant Propagators’ Society (IPPS). He received the Distinguished Achievement Award for Nursery Crops from the ASHS (1989), L.M. Ware Distinguished Research Award—ASHS—SR (1995), and S. B. Meadows Award of Merit—IPPS (1994). He is a recipient of the Association of Former Students Distinguished Achievement Award for Teaching—TAMU (1997), Chancellor of Agriculture’s Award in Excellence in Undergraduate Teaching—TAMU (1998), L.M. Ware Distinguished Teaching Award, ASHS—SR (1998), and L.C. Chadwick Educator’s Award, American Nursery and Landscape Association (1999). He was the International Division Vice-President—ASHS. He was President, and is currently Editor, of the IPPS—SR. He is President-Elect of the ASHS.

Robert L. Geneve is a Professor in the Department of Horticulture at the University of Kentucky. He teaches courses in plant propagation and seed biology. He has co-authored over 100 scientific and technical articles in seed biology, cutting propagation, and tissue culture. He is also the co-editor of the book Biotechnology of Ornamental Plants and author of A Book of Blue Flowers. He has served as a Vice-President, program chair and President for the International Plant Propagators’ Society–Eastern Region. He has served as the Editor for the international horticulture journal, Scientia Horticulturae from 2001 to 2008 and is currently on the editorial boards of the Propagation of Ornamental Plants and the Journal of Seed Technology. He is a recipient of the University of Kentucky, George E. Mitchell Jr. Award for Outstanding Faculty Service to Graduate Students (2006), and is a Fellow the American Society for Horticultural Science (2005), and the International Plant Propagators’ Society–Eastern Region (2003).

Fred T. Davies, Jr.
Robert L. Geneve
Acknowledgements

The authors and publisher would like to thank the following reviewers for their time and content expertise:

R. Lee Ivy, Associate Professor
Landscape Gardening
Sandhills Community College
Pinehurst, NC

G. N. Mohan Kumar, Associate Professor
Horticulture and Landscape Architecture
Washington State University
Pullman, WA

Mark J. Schusler, Assistant Professor
Horticulture
Tarrant County College
Fort Worth, TX

Todd P. West, PhD, Assistant Professor
Horticulture
West Virginia University
Morgantown, WV

Sandra B. Wilson, Associate Professor
Environmental Horticulture
University of Florida
Fort Pierce, FL