1 Water Relations

2 Water management (Contd.)
 • Citrus trees are water-conserving plants
 • Root hydraulic conductivity (Lp) is low
 • Lp is positively correlated with root temperature
 (Fig 4.1)

3 Water management
 • Young leaves are more likely to wilt than mature leaves
 • High VPD leads to decrease in stomatal conductance and reduce water loss from the leaf.

4 Water Stress (Contd.)
 • Manifestation: cessation of growth, leaf wilting or decrease in stomatal conductance (g_s), net CO2 assimilation (A) or root conductivity.
 • Rootstocks: high in Carrizo than rough lemon

5 Water Stress
 • As temp. increases and RH decreases during the day, VPD increases
 - g_s, transpiration and A increases (Fig 5.3)
 - Mid morning- Mid day: maximum g_s, and A
 - > 30C reduce A, and reduce RuBisco activity
 • Water stress is greatest in high VPD

6 Irrigation
 • 3-4 acre feet of water is needed on average / year.
 - acre foot = 325,851 gal
 • Too much water
 - O_2 depletion
 - Phytophthora
 • Temp. of water is important
 • Internal drainage is needed

7 Irrigation
 • Need to know water holding capacity
 - amount /irrigation
Frequency of irrigation

How to know when the trees needs water
- look at soil moisture status
- look at status of water
 - Pressure bomb
 - Estimate ET
 - Use pan

Guidelines for estimating soil moisture level by “feel” Contd.

Guidelines for estimating soil moisture level by “feel” Contd.

Guidelines for estimating soil moisture level by “feel” Contd.

Guidelines for estimating soil moisture level by “feel”

Irrigation
- Need to know water holding capacity
 - amount /irrigation
 - Frequency of irrigation
- How to know when the trees needs water
 - look at soil moisture status
 - look at status of water
 - Pressure bomb
 - Estimate ET
 - Use pan

Evapotranspiration (ET)
- ET = Class A X 0.7 X A X 27,158
- Class A Pan = Daily evaporation from Class A pan in inches.
- A = Area covered by one tree (in acres)
- ET = Daily water use in gal / tree.
- 1 Acre = 43,560 sg.ft

Water Use (inches/day)

Factors to consider when deciding irrigation system
- Source of water
- Topography of grove
 - Flood irrigation
• high volume needed, good leaching, but enhances phytophthora
• In young orchards (first 2 years) 12% of the water amount used for flood irrigation

• Soil water capacity

16 Factors to consider when deciding irrigation system

• Water quality
 – should the orchard be established?

 ppm total salts
 200-400 Excellent
 400-600 good
 600-800 fair
 1000+ plant something else

17 Water Quality Considerations

• Total Soluble Salts: 1000 ppm -1.5 dS/m
 1200 ppm -1.8 dS/m

• Boron Concentrations: 0.5 -0.75 ppm

• Chloride: < 350 ppm

• Sodium Adsorption Rates (SAR): <8

18 Water Quality Considerations

Rio Grande River

• Total Soluble Salts: 770 ppm -1.2 dS/m

• Boron Concentrations: Trace

• Chloride: 160 - 180 ppm

• Sodium Adsorption Rates (SAR): 3-4

19 Factors to consider when deciding irrigation system

• Method
 – Furrow
 » Need flat grove and uniform soil
Factors to consider when deciding irrigation system

- Sprinklers
 - permanent furrows vs cultivation
 - length
 - slope
 - labor intensive

- Factors to consider when deciding irrigation system
 - Sprinklers
 - permanent
 - high vol... ground level or overhead
 ‡ Over head- requires good water quality
 ‡ can cool trees
 ‡ washes trees (dust vs mites)
 - Drag line system
 ‡ splashing water vs phytophthora

- Factors to consider when deciding irrigation system
 - Drip System (low volume sprinkler)
 - Problems
 - Salts build up... need winter rains to leach
 - Soil type vs soil mass wet vs # needed / tree
 - minimize weed growth
 - Drip- when trees are small
 - microjet-once trees are large

Microirrigation

- Microsprinklers Drip
 - 10 % of the amount of water used in young orchards
 - 80% of the amount of water used in mature orchards

- Strip Irrigation
 - 50 % saving of water in young orchards compared to flood
 - Possibility of strip irrigating mature orchards as well

Scheduling Flood Irrigation (winter)

- Trees will extract water mostly from the top 4 ft layer.
- 1 ft of soil holds 2” of available water.
- Irrigations are scheduled when 60% of available water is depleted from the soil.
- 1 Irrigation supplies 6” water

Scheduling Flood Irrigation winter (contd.)

- with 60 % depletion of available water
• 1 ft of soil can hold 2” X 0.6=1.2“ of water
• 6” irrigation will wet 6/1.2 = 5 ft of soil
• 20 % of water percolates below the root system

winter
• In winter, grapefruit orchard uses 0.08“ of water / day.
• with 60% depletion, then there is 4 ft X 1.2“ = 4.8 of water to be used before the next scheduled irrigation.
• 4.8“/0.08 = 60 days is the interval between irrigations.

Summer (Contd.)
• with 60 % depletion of available water
• 1 ft of soil can hold 2” X 0.6=1.2“ of water
• 6” irrigation will wet 6/1.2 = 5 ft of soil
• 20 % of water percolates below the root system

Summer
• In summer, grapefruit orchard uses 0.18“ of water / day.
• with 60% depletion, then there is 4 ft X 1.2“ = 4.8 of water to be used before the next scheduled irrigation.
• 4.8“/0.18 = 27 days is the interval between irrigations.

Scheduling Drip Irrigation
\[\text{INT} = \frac{S \times \text{AW} \times 0.623}{\text{Ir}} \]

S = Soil water storage capacity at 25 % depletion in inches
Aw = area wetted with emitters (sq. ft /tree)
Ir = Irrigation amount (gal / tree / day)

Soil water storage capacity at 25 % water depletion