Tuber Crops

- Potato
- Jerusalem artichoke
- Yam
- Enlarged stolons
 - Underground stems

Potato

- Solanaceae Family
- *Solanum tuberosum*
 - Approximately 2000 *Solanum* spp., 160 form tubers and 20 are cultivated
- Center of Origin: Andes of South America
- Cool season, Perennial, vegetatively propagated
- Irish potato famine caused by late blight in 1846
 - Destroyed the crop, caused a great famine, and Irish immigration to US
 - Hence, "Irish" potato

Potato Industry

- Number 1 vegetable crop in the US (acreage & value)
 - Per capita consumption over 145 lbs/person
 - 50 lbs fresh, 60 lbs frozen, 15 lbs chips, 17 lbs. dehydrated & 2 lbs canned
- Grown year-round in US, but mostly as a summer crop with a fall harvest

Plant Growth & Development

- Three development phases
 - Emergence and early development
 - Mostly leaf & stem growth
 - Tuber initiation
 - Tuber enlargement & maturation

Emergence & Early Development

- Stems develop from a seed tuber or cut piece of larger tuber
- Usually several upright stems up to 3-1/2'
- Stems become bushy as they age, may eventually become prostrate before senescing
- Roots arise at the underground nodes of the main stem
 - Usually remain in top 24" of soil

Tuber Initiation

- Tubers are enlarged portions of underground stems
- Arise at nodes of the main underground stem, usually within a week after the above ground shoots emerge
- Tubers are storage organs with surplus carbohydrates
- Initiation results in rapid cell division
 - By the time the tuber is ~1/2" in diameter, most of the cells in the final tuber are formed
Tuber Enlargement

- Tubers are swollen stems with buds (eyes) in a spiral pattern around the stem.
- As the tuber enlarges, the epidermis is sloughed off and a layer of cork cells covers the surface (periderm).
- As the tuber matures, the periderm toughens, the starch content increases, and the water content decreases, increasing the specific gravity (dry weight).

Shoot/Tuber Relationships

- Yield & quality of tubers is directly dependent on available carbohydrates from the foliage.
- Requires early vigorous shoot/leaf growth to have photosynthetic capacity.
- Plant draws on carbohydrates in seed piece during first several weeks of development.
- Once tubers are initiated, they are in direct competition with the rest of the plant.
- Anything that decreases photosynthesis or increases respiration will retard tuber growth.

Tuber Dormancy & Dominance

- Tubers undergo a rest period (dormancy) following maturation.
- The dormancy period may range from 1-3 months depending on the variety.
 - Following dormancy, the eyes will begin to germinate unless prevented by temperature or chemicals.
 - Dormancy can be broken by cool-warm temperature treatment or by hormone treatment.
- The apical eye (bud nearest the apex) exhibits strong dominance.
 - Planting whole tubers usually results in only a few of the buds germinating into stems.
 - Extended dormancy periods reduce the level of this dominance.

Climatic Requirements

- Potatoes strongly influenced by daylength and temperature, and varies depending on the stage.
 - Vine growth:
 - Long days
 - Optimum temperature: 80-90oF
- Tuber initiation:
 - Short days
 - Optimum temperature: 59oF
- Tuber development:
 - Short days
 - Optimum temperature: 70°F day and <57°F night
 - Low night temperatures reduce respiration.
- Lower temperatures will result in more tubers (initiation frequency higher) but they will be smaller.
- Potatoes (a cool season crop) can be grown in climates with high temperatures (100°F+).
 - Adequate supply of water
 - Cool nights

Cultural Requirements

- Soil types:
 - Light soils best (like rooted crops).
 - Require good aeration.
 - Excess moisture reduces yields, favors above ground growth over tuber growth.
- Fertility requirements:
 - Potatoes are in the group of vegetables with the highest fertility requirements.
 - Shallow root system.

Planting & Crop Establishment

- Potatoes are vegetatively propagated via tubers.
- Certified Seed (tubers):
 - State agencies inspect production fields and stored seed tubers and certify the seed as being true to type and disease-free (within a range).
- Potatoes do produce true seed but with few exceptions, not reliable:
 - Tetraploid: low seed yield.
 - Heterogeneous: True seed will segregate.
Planting & Crop Establishment

- Small uncut tubers (1-2” diameter) often used in commercial fields
 - may result in a better stand and higher yield
 - Less chance of spreading disease
- Cut pieces are cheaper, diminish apical dominance resulting in more rapid emergence, produce more total sprouts and more uniform sprout development
 - Cut pieces must contain at least one eye
 - If pieces too small, will result in weak plant
- Seed should not be planted right out of storage
 - Will undergo a “sweat” period that favors decay
 - Should be warmed for several days prior to planting

Soil temperatures should be >40°F
Commercial fields are planted with 2-row or 4-row planters
Spacing may range from 6” to 16”
 - Wider spacing generally results in larger tubers
 - Un-cut seed potatoes tend to produce more smaller tubers than cut seed, so are usually spaced farther
 - Cultivars differ in number of tubers and size, so are spaced accordingly to provide the desired tuber size

Cultural Practices

- Potatoes are usually grown in ridged rows to prevent sunlight from reaching tubers
- Cultivation should be held to a minimum because of shallow root system and tubers forming near the surface
- Potatoes compete with weeds better than most vegetables

Pests and Diseases

- Insects
 - More than 25 insect pests attack potato
 - Colorado potato beetle
 - Flea beetle
 - Leafhoppers
 - Aphids
 - Potato tuberworms
 - Grubworms & wireworms
 - If planted following sod or grass

- Diseases
 - Many diseases, many are seed-borne
 - Late blight (Phytophthora infestans)
 - Historically the major disease of potatoes
 - Scab
 - Superficial or pitted corky lesions on infected tubers
 - Mosaic Diseases
 - Potato Virus X, Potato Virus Y
 - Seed-borne

- Diseases
 - Late blight (Phytophthora infestans)
 - Scab
 - Mosaic Diseases
 - Greening of tubers (chlorophyll development)
 - Results from exposure to light
 - Problem caused by solanine, which is bitter tasting and toxic
 - Hollow heart
 - Cavities in the center of tubers
 - Caused by irregular growth patterns
 - Blackspot
 - Bruising of tubers
 - Usually occurs on immature tubers

Physiological Disorders

- Greening of tubers (chlorophyll development)
 - Results from exposure to light
 - Problem caused by solanine, which is bitter tasting and toxic
- Hollow heart
 - Cavities in the center of tubers
 - Caused by irregular growth patterns
- Blackspot
 - Bruising of tubers
 - Usually occurs on immature tubers
Harvest and Postharvest

- Early-crop potatoes usually go straight from the field to market without storage, and tubers are usually not fully mature
- For storage potatoes, maturation is critical for maximum shelf-life
 - To achieve full maturation, the vines are usually killed about 2 weeks prior to harvest
 - Vine killing induces the tubers to "suberized" forming a tough skin, making the tubers more resistant to bruising

Sprout Inhibition

- Once the “rest” period has past, tubers will sprout if conditions are right for growth
 - Usually when temperatures rise above 40°F, but especially when temperatures reach 60°F
- Since these temperatures are close to storage conditions, sprout inhibitors are usually used to prevent sprouting during storage
 - Some are applied to foliage 2-3 weeks prior to harvest
 - Some are applied to tubers during their holding period
- Cold temperatures will prevent sprouting, but will also favor conversion of starch to sugar, which reduces quality especially for processing potatoes

Harvest and Postharvest

- Commercial potatoes are machine harvested with one or two row harvesters
- Early-crop potatoes are usually washed in chlorinated water and sent to market
- Storage potatoes undergo three phases to prolong shelf-life and maximize quality:
 - Curing
 - Holding
 - Removing

Harvest and Postharvest

- Curing
 - Held at 55-60°F, high relative humidity for 2-3 weeks
 - Promotes healing of cuts and bruises
- Holding (depends on use of crop)
 - Seed or table stock: 38-40°F
 - Processing requires higher temperatures to prevent the conversion of starch to sugars:
 - Chips: 50-55°F
 - Frozen or dehydrated: 42-45°F
- Removal
 - If held for prolonged period, may need to recondition the tubers to reduce damage from handling and reverse changes of starch to sugar
 - 50-60°F for 2-3 weeks

Jerusalem Artichokes

- Compositae Family (Sunflower)
- *Helianthus tuberosus*
- Plant resembles sunflowers (4'-8' tall)
- Perennial, grown as annual
- Native to North America
- Vegetatively propagated via tubers
- Uses similar to potato
- Primary carbohydrate reserve in tubers is inulin, a polymer of fructose that can be utilized by diabetics in lieu of glucose