“What business are you in?”

“I’m an environmental economist.”
“Environmental economics” is not oxymoronic.

1. The causes of environmental problems (in a market economy) are economic.

2. The consequences of environmental problems have important economic dimensions.

- Therefore, an economic perspective is essential for
 - Understanding environmental problems
 - And therefore can be exceptionally helpful for the design of solutions that will be effective, economically sensible, and politically pragmatic.

The Causes of Environmental Pollution are Economic

May firms go beyond full compliance with the law (sacrifice profits in the social interest)?

For publicly-owned firms:
- Fiduciary responsibility to shareholders
- But the business-judgment rule

Where does the pollution go?
- Commercial laundry next door
- Does cost (to laundry) show up in annual report of steel producer?

Pollution is an externality.
The Consequences of Environmental Pollution have important Economic Dimensions

1. Producer \rightarrow Producer
 (steel production & laundry services \rightarrow $)
2. Producer \rightarrow Consumer
 (paper production & recreational fishing)
3. Consumer \rightarrow Consumer
 (secondary exposure to cigarette smoke)
4. Consumer \rightarrow Producer
 (littering in a movie theatre \rightarrow $)

- Economic consequences \geq financial consequences
 - Economics is not the same as accounting

Economic Valuation of the human health impacts of environmental pollution

- You drink dirty water: feel sick for two days, stay home from work, go see the doctor
- How should we economically value the damages of your exposure to this pollution?

1. Lost wages (reduced productivity)?
2. Medical costs (whether paid, insured, or “free”)? [Opportunity Cost]
3. “Pain-and-suffering”?

- Economics takes a holistic view, because #3 cannot be observed
 - The economic value of the damages are whatever you truly feel (believe) that they are!
 - Not what you say the damages are, but what you really feel that they are.
 - Your minimum willingness to accept (WTA) compensation to tolerate exposure
 - Your maximum willingness to pay (WTP) to avoid exposure
Can meaningful numbers be put on these concepts?

- There’s good news and bad news. First, some good news …
 - Over the past 50 years, economists have developed rigorous methods for reliably estimating people’s WTA and WTP associated with a wide range of environmental threats and damages.
 - Now, some bad news: you’ll have to take a course in environmental economics — or at least read part of a book — to learn about those methods.

- Are these methods just the province of pointy-headed academics?
 - No, the concepts and specific methods are validated, even required by:
 - Executive Orders by Presidents Reagan, Bush, Clinton, Bush, and Obama
 - Federal statutes, including parts of Clean Air Act, Clean Water Act, CERCLA, and many others
 - Best analytic methods are laid out by Guidelines of U.S. Office of Management and Budget, U.S. Environmental Protection Agency, and others.

- If we have concepts and methods for valuing damages of environmental pollution, then we have methods for valuing benefits of public policies.

What about the costs of environmental policies?

- How much does it cost to reduce a ton of SO₂?
- Total costs increase at an increasing rate.
- In other words, incremental or marginal costs increase.

<table>
<thead>
<tr>
<th>Emission Reduction (million tons)</th>
<th>Total Cost ($ billion)</th>
<th>Average Cost ($/ton)</th>
<th>Marginal Cost ($/last ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>$2.2</td>
<td>$270</td>
<td>$270</td>
</tr>
<tr>
<td>10</td>
<td>$3.6</td>
<td>$360</td>
<td>$720</td>
</tr>
<tr>
<td>12</td>
<td>$9.3</td>
<td>$720</td>
<td>$2,775</td>
</tr>
</tbody>
</table>

- This general pattern is ubiquitous — for virtually all environmental policies:
 - Increasing marginal costs.
The Costs of Pollution Control

The Damages of Pollution
The Benefits of Pollution Control

Total Benefits (Avoided Damages)

\rightarrow

Pollution Control

\leftarrow Dirtier Air

Cleaner Air \rightarrow

Think about your own pollution-control policies.

- We all exercise pollution control policies, where we get the benefits and we pay the costs
 - Keeping the kitchen floor clean
 - Do you keep it perfectly clean?
 - Why not?
- And how clean do you keep your garage floor?
- What about the cleanliness you expect in a surgical theatre?
- Why do we individually and collectively choose different levels (standards) of acceptable cleanliness in these different cases?
 - It seems that benefits and costs matter.
 - In fact, we behave as if we’re doing a very specific kind of analysis!
The Efficient Level of Pollution Control

- Maximizing the difference between benefits and costs: the efficient level of pollution control effort is not an infinite level.
 - The efficient amount of pollution is not zero.
 - Interest groups on both sides of the policy spectrum may be dissatisfied
 - Not enough benefits to please Greenpeace
 - Too much cost to please the Chamber of Commerce
- Markets produce this efficient quantity of goods and services for most products,
 - But not for externalities.
- So, this is not a call for laissez-faire, but for a legitimate role for public (government) intervention.
 - But not all government intervention is created equal.
 - There are some very costly forms of environmental regulation,
 - … and other approaches that harness market forces on behalf of environmental protection, and hence are cheaper – example is “cap-and-trade”
The Global Climate Policy Challenge

- Kyoto Protocol came into force in February 2005, with first commitment period, 2008-2012

- Even if the United States had participated, the Protocol’s direct effects on climate change would be very small to non-existent

- Science and economics point to need for a credible international approach

- Climate change is a classic global commons problem — so it calls for international (although not necessarily global) cooperation

Placing Copenhagen (December 2009) in Perspective

- Cliché about baseball season applies to international climate change policy: it’s a marathon, not a sprint
 - Scientifically: stock, not flow environmental problem
 - Economically: cost-effective path is gradual ramp-up in target severity (to avoid unnecessary capital-stock obsolescence)
 - Economically: technological change is key, hence long-term price signals
 - Administratively: creation of durable international institutions is essential

- International climate negotiations will be an ongoing process – much like trade talks – not a single task with a clear end-point.

- Bottom-Line: sensible goal for Copenhagen was progress on sound foundation for meaningful long-term action, not some notion of immediate “success”
Alternative definitions of “success” at COP-15

- It would have been possible – but actually unfortunate – to achieve what some people would have defined as “success” in Copenhagen:
 - A signed international agreement, glowing press releases, & photo opportunities
 - That would have been unfortunate, because

- Such an agreement could only have been the “Kyoto Protocol on Steroids”
 - More stringent Annex I targets, & no meaningful action by key developing countries
 - Signature but no ratification by U.S. (just like Kyoto)
 - No real progress on climate change
 - Remarkably, some groups – including many advocacy organizations, as well as the international press corps – would have applauded such a step

What actually happened in Copenhagen?

- Organizational failure (47,000 advance credentials – capacity of 15,000)
- Political grandstanding & lack of consensus
- But last-minute, direct negotiations among key national leaders
 - Leaders of United States, China, India, Brazil, and South Africa
 - Virtually unprecedented in international negotiations
 - Saved COP-15 from complete collapse
 - Produced a significant political framework, the Copenhagen Accord
- Accord addresses two of the key deficiencies of Kyoto Protocol:
 - (1) expands coalition of meaningful commitments to include all major emitters
 - (2) extends time-frame of action
The Copenhagen Accord

- The “good news”
 - Provides for real cuts in greenhouse gas emissions by all major emitters
 - Establishes a transparent framework for evaluating countries’ performance against their commitments
 - Initiates a flow of resources to help poor, vulnerable nations carry out both mitigation and adaptation
 - Submissions received from 130+ parties, which account for >80% of 2006 global emissions

- The “bad news”
 - Not on track for 450 ppm (2°C)
 - Annex I/non-Annex I distinction remains, in words (but blurred in action)
 - Future of UNFCCC threatened (bad news?)

- U.S. (& Chinese) domestic policy action is critical

Core of Likely Future U.S. Action: Cap-and-Trade +/-

- Meaningful legislation (HR 2454/Waxman-Markey) with cap-and-trade passed by House in June, 2009, by small margin

- Attention now focuses on Senate
 - Kerry-Lieberman proposal (May 2010)
 - Politics difficult: 60 votes required
 - Bi-partisan opposition (coal & rural states)

- Major substantive issues remain
 - Ambition, allocation, offsets, cost-containment mechanisms, international competition protection, regulatory oversight, nuclear power provisions, offshore oil & gas provisions
 - Gulf oil spill will be used by supporters and opponents of climate bill
Cost-Effective Economy-Wide Climate Policy
Achieves Very Different Reductions from Different Sectors

Anticipated Economic Impacts of U.S. Climate Policy

- **Cumulative cost**, 2012-2030 – 0.3% to 0.9% of GDP
- Essentially a **tax on coal**: coal price increases **280%** relative to BAU (2030)
 - Coal \rightarrow natural gas, then nuclear & renewables for electricity generation
 - **Impact on gasoline price**: increase of 9% (35¢/gal) relative to BAU (2030)
 - **Gasoline demand**: 5% fall below BAU by 2030
- **Electricity sector** accounts for **80%-90%** of emissions reductions
Other Important U.S. Climate Policy Developments

- **Carbon Tax** – some real interest and some phony interest
- **Stimulus Package** – $80 billion for renewables and energy-efficiency
- Automobile and Appliance Energy **Efficiency Standards**
- Court-Ordered **Regulation** under the Clean Air Act
 - U.S. Supreme Court decision & Obama “endangerment finding”
 - Regulation would be ineffective and costly – but force Congress’s hand?
- **Sub-National Policies** – California’s AB 32, RGGI, etc.
 - May turn out to be the core of U.S. action
 - Good news – can be linked
 - Bad news – inferior to a national approach

U.S. Political Timing:
A Challenge for the International Process

- Recession (and unemployment)
- Other domestic policy priorities: economic stimulus, health care, financial regulation, and now – the Gulf oil spill
- Public perceptions
- Congressional deliberation, difficult politics, and challenging numbers
- U.S. mid-term elections (November, 2010) *work against* bipartisanship, and make it more difficult to vote to raise energy prices
• So, “Environmental Economics” is not an oxymoron.

For More Information

The Harvard Environmental Economics Program
www.hks.harvard.edu/m-rcbg/heep/

www.stavins.com

• An economic perspective is essential for a
 • full understanding of environmental problems.

• And therefore for the design of solutions that are:
 • environmentally effective
 • economically sensible
 • politically pragmatic