Rubber

Cachuchu (Ameridian)
Caucho (Spanish)

Euphorbiaceae
Hevea
brasiliensis

Tree

- Height
 - In wild grows to 40 m
 - Cultivated 10-30 m
 - Growth restricted by tapping activity
- Early training remove all branches up to 2.5 m.
 - Smooth trunk for latex collection
 - When trunk reaches 500 mm circumference (15 cm diameter)

Latex Vessels

- Location
 - External bark
 - Latex vessels
 - Phloem
 - Cambium
 - Xylem
- Laticiferous vessels
 - Latex synthesis and transport
- Tapping
 - Important not to damage phloem sieve cells or cambium

Trifoliate Foliage

- Young leaves - copper colored
 - Green when mature
 - Young trees never devoid of foliage

- After tree is mature (5 years)
 - Wintering, at least once per year
 - Drop leaves
 - Takes 2 weeks to regrow leaf canopy
 - Yield low during this period
- Other reasons for defoliation
 - Drought
 - Cold and short days (outside trop)

Flowering

- Monoecious
 - Female flowers - tips of branches
 - Male flowers more numerous
- Cross pollinated
 - Anemophilic
 - Entomophilic
- Seed
 - Capsules with 3 seed
Rubber Origin and Dispersal

Native range of Hevea spp

Native range of Hevea brasiliensis

Adaptation: Rain forest species

- Temperature
 - Ideal temperature 22 - 30°C
 - Generally below 600 m above sea level
 - Up to 1000 m at equator

- Moisture
 - 1500 - 3000 mm / year
 - Does not flourish if pronounced dry season
 - Excessive rains interfere with tapping

Adaptation: Rain forest species

- Soil
 - pH 4.0 - 6.5
 - Well drained soil
 - Sensitive to flooding or high water tables

- Prone to wind damage
 - Especially in commercial plantings

- Prime growing region
 - 10° N and S of the equator

Origin of Rubber, Hevea brasiliensis

- Origin
 - Amazon Basin
 - Upper Orinoco
 - Guianas

- Wild trees harvested by local peoples
 - Footwear, bottles
 - Torches, balls
 - At least 1,000 years before the arrival of Europeans to South America

Development of Rubber

- Initially used little
 - Could not reliquify
 - Sensitive to temperature

- 1770 - Priestley in England
 - Rubber cubes introduced as erasers

- 1820’s
 - Methods to reliquify
 - Rubberized cloth -> MacIntosh
Development of Rubber

- 1840’s
 - Vulcanization with sulphur invented
 - Stabilized rubber at high and low temperatures
 - Many more uses were invented
 • Seals for sewers
 • Conveyor belts
 • Inflatable boats
 • Springs in railway and road vehicles

- Increased demand creates need for reliable source
 - Brazilian production based on tapping wild trees destructively

- British sent Sir Wickham to Brazil to collect seed
 - 1876 brought back 70,000 seed
 - Germinated at Kew Gardens
 - 2,700 seedlings sent mainly to Sri Lanka

Development of Rubber

- Invention of tires in late 1800s
 - Increased demand
 - Increased price of rubber

- Stimulated development of plantations in Asia, Africa, and South America
 - Successful in Asia and Africa
 - Unsuccessful in South America
 • South American Leaf Blight
 • Microcyclus ulei

Production

- Webster and Baulkyk, 1989

- World production
 - 5 million mt
 • 60-70% for tire manufacture
 - Most (85-90%) in Southeast Asia
 • Malaysia, Indonesia, Thailand, Sri Lanka, India
 - Little in South America due to SALB

- Production of synthetic rubber
 - 10 million mt

Propagation

- Rootstocks - established by seed

- Plant fresh seed
 - Begin lose viability within 7-10 days
 - Germinate in 1-3 weeks

- Nursery
 - 6 months 1-1.3 m tall
 - 10-15 months ready for transplant

Improved Varieties Budded

- Budding methods
 - Week before budding
 • Cut leaves subtending bud

- Patch budding - historic

- Green strip budding
 - Let scion latex drain 4 hrs before cutting buds from scions
Planting
- Density
 - 250 to 300 plants/ha
- Precocity
 - 5-8 years before begin tapping
 - Needs to be about 50 cm in circumference at 1 m height
 - Trunk diameter of 7-8 cm
- Productive life
 - Production increases until 15 years old
 - Normally tap for 20-25 years
 - Recommend replacement at 30 years of age
 - Harvest trees for timber

Tapping and Bleeding
- Begin to tap
 - 45 to 50 cm trunk perimeter
- Excision method of tapping
 - Cut groove 30° angle mark at 48” point
 - Draw 180° around tree (half way)
 - Groove does not injure cambium

Latex flowing in recently cut tree

Daily Schedule
- One person starts cutting at 0600
 - Morning is when flow the highest
 - Cut 500 trees by 0930
 - Anti-coagulant in each cup
 - Latex flows for 1-3 hours
- Collection begins at 1100

Tapping Life of Tree
- Depends on ability of tapper
 - Extend life by cutting thinner slivers
 - Consume bark at slower rate
- Tapping schedule
 - First side tapped for 4-5 years
 - Second side tapped for 4-5 years
 - Repeat cycle on original sides
 - An individual tree will last 20-25 years

Tapping and Bleeding
- Remove thin sliver of bark
 - 3 times/week
 - 1” vertical distance / month
 - 120-160 tappings per year
- Ethephon (early 1970s)
 - Applied to bark near cut
 - Delays plugging --> increased flow
- Research to decrease number of tappings needed
Second time to tap

Yields

- Unselected wild seedlings
 - 300 to 450 kg/ha
- Modern clones from Wickham population
 - 3 generations of breeding (100 years)
 - 700 to 2,000 kg/ha

Producers

- Currently plantation approach is in decline
 - Large demand for labor
- Small holder production is rising
 - Labor needed throughout year
 - Relatively low capital investment
 - Year round cash flow

Any Questions?