Plant Growth & Development

- Growth Processes
- Growth Requirements
- Types of Growth & Development
 - Factors

Growth Processes

- Photosynthesis
 - Creating carbohydrates (stored energy) from CO₂ + water + sunlight in the presence of chlorophyll
- Respiration
 - An energy releasing reaction; chemical energy originating through photosynthesis is used for growth and development
- Net Photosynthesis
 - Total Photosynthesis – Total Respiration
 - Net Photosynthesis = Biological Yield
 - Increasing Total Photosynthesis or Decreasing Respiration will Increase Biological Yield

Plant Growth & Development

- Economic Yield
 - Weigh per unit area of the edible portion of the crop
- Biological Yield
 - Economic yield plus all remaining supporting structures not used for consumption
- Harvest Index
 - Ratio of Economic yield to Biological yield
Growth Requirements

- Nutrients
- Water
- Temperature (Heat)
- Light
- Growth Substances (Hormones)

Concept of Limiting Factor

- Almost always, one of the growth requirements is limiting production
- The limiting factor could be any of the growth requirements
- Once you correct the limiting factor, another growth factor will likely limit production
- If all the growth requirements are optimized, genetics will limit production

Nutrients

- 19 Essential elements
 - Carbon, Hydrogen, Oxygen
 - CO₂ & H₂O
 - Major Nutrients
 - Nitrogen
 - Phosphorus
 - Potassium
 - Minor Nutrients:
 - Calcium, Iron, Copper, Sulfur, Magnesium, Manganese, Zinc, Boron, Chlorine, Cobalt, Sodium, Silicon and Molybdenum
- Carbon, Hydrogen, Oxygen & Nitrogen = 95% of plant solids
Nutrient & Water Absorption

- Most absorption occurs near the apexes of young roots
- Older roots tend to get “corky” (layers impervious to water/nutrient absorption)
- Young plants have a relatively small root area:
 - Have a relatively high water and nutrient requirement

Water

- Most vegetables have a high water content (lettuce = 95%)
- Most vegetables require much more water than most agronomic crops
 - Water is often the limiting factor in vegetable production
- Water Quality and Quantity are equally important
 - Salinity is often the major quality problem
 - (More later)

Water Loss

- Most water is lost from plants through the stomates on leaves
- Environmental factors that affect water loss
 - Humidity & Wind
 - ↑ Humidity, ↓ Low Wind = ?
 - ↓ Humidity, ↑ High Wind = ?
- Plants may become deficient in water even when soil supplies are adequate
 - Stomates will close, reducing moisture loss and also CO₂ uptake, which will affect ?
Temperature

• Optimum Temperature Range
 – Maximum photosynthesis and normal respiration

• Diurnal Temperature
 – Fluctuation between day and night temperatures
 – For all crops: Optimum day temperature is higher than optimum night temperature
 – Optimum temp for photosynthesis is higher than optimum temp for respiration

Diurnal Temperatures

• Optimum yields usually occur when night temperatures are in the upper half of the range during the vegetative phase, and in the lower half during the reproductive phase
• Cooler night temperatures (within range) tend to improve quality

Heat Units

• Quantity of Heat determines crop maturity
 – Base temperature established for each crop
 – Mean daily temperature calculated
 – Subtract base from mean to get daily heat units
 – e.g.: Tomato base temp = 50°F
 – High temp = 80°F, low temp = 60°F
 – Heat units = (80+60)/2 = 70 – 50 = 20 heat units
• Other factors also influence heat units, such as soil temperature
Temperature Effects on Crops

- Warm season crops produce maximum yields under relatively high temperatures
- Cool season crops produce maximum yields under relatively low temperatures
- Excessive temperatures will adversely affect crop yields

Light

- Intensity and Quality affect crop growth
- Quality difficult to manipulate, especially in the field
- Intensity can be manipulated by plant density and planting date
- Warm season crops tend to require higher light intensity compared to cool season crops

Growth Substances

- Hormones: Auxins, Gibberellins, Cytokinins & Inhibitors
- Auxins:
 - Cell elongation, proliferation & differentiation
 - Apical dominance, phototropism, geotropism, root initiation
- Gibberellins
 - Stem elongation, dormancy, flowering, light & temperature responses
- Cytokinins
 - Cell growth & differentiation; keep detached leaves green
- Inhibitors
 - Restricted growth, dormancy, abscission and senescence
 - When would you want to restrict or prevent growth?
Types of Growth & Development

- Vegetative Phase
 - Carbohydrate Utilization
- Reproductive Phase
 - Accumulation or storage of carbohydrates

Vegetative Phase

- From seed germination through growth of the primary supportive structure
- Three important processes:
 - Cell division
 - Cell enlargement
 - Cell differentiation (initial stages)
- Requires large quantities of carbohydrates
- Growth rates determined by growth potential and availability of carbohydrates
- Quality influenced by growth rates

Vegetative Growth Factors

- Genetic Factors
 - Cultivar
 - Does it have the yield potential
 - Is it adapted to your growing area
- Environmental Factors
 - Planting date, Plant density
 - Proper soils and preparation, with sufficient nutrients and water (but not excessive)
 - Presence of pests (insects, weeds & diseases)
Reproductive Growth Phase

- Maturation of tissues manufactured during vegetative phase
- Production of growth regulators
- Development of flower buds, flowers, fruit and seed, or the development of storage organs
- Relatively little cell division occurs
- Most of the carbohydrates are accumulated in the fruit, seed or storage organs

Types of Reproductive Growth

- Dominance of vegetative growth during first phase, and dominance of reproductive growth during second phase
 - Sweet corn, beans, determinate crops
- Dominance of vegetative growth during first phase, and a relatively equal balance of vegetative/reproductive growth during second phase
 - Cucurbit crops, eggplant, indeterminate crops

Reproductive Triggers

- Vernalization
 - Temperature treatment below a minimum for a minimum length of time (established for each crop)
 - May be Obligate or Quantitative
- Photoperiod
 - Length of day/night (long-day vs. short-day)
 - May be Obligate or Quantitative
 - The majority of vegetable crops are day-neutral
Reproductive Triggers

Vernalization:
Temperature treatment below a minimum for a minimum length of time (established for each crop)

• Quantitative
 – Lettuce, radish, spinach, Chinese cabbage, kohlrabi, turnips, endive, chicory

• Obligate
 – Beets, cabbage, carrots, celery, Swiss chard, collards, kale, leeks, onion, parsley, parsnips, rutabaga, brussels sprouts, cauliflower, broccoli

Reproductive Triggers

Photoperiod:
Length of day/night (long-day vs. short-day)

• Quantitative Long-day
 – Beets, radish, parsnip, carrot, celery, lettuce, Swiss chard, Chinese cabbage, turnips

• Quantitative Short-day
 – Sweet corn

• Obligate Long-day
 – Spinach, endive, chicory
 – Onion (bulbing)

• Obligate Short-day
 – Sweet potato

Why are reproductive triggers important?

– For reproductive crop plants:
 • Must have enough supportive structures to support reproductive growth

– For vegetative crop plants
 • Must reach marketable size and harvest before reproductive growth begins